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Chapter 1

Ring Theory Review

Definition 1.1. A commutative ring with 1 is a triple (R,+,×) com-
prising of a set R equipped with two binary operations, addition + and mul-
tiplication × satisfying the following axioms:

1. (R,+) is an abelian group

2. Multiplicaiton is associative

3. Multiplication distributes over addition

4. Multiplication is commutative

5. There exists 1R ∈ R such that 1R × r = r × 1R = r for all r ∈ R

Remark. A normal ring does not require conditions 4 nor 5. We will refer
to a commutative ring with 1 simply by ring henceforth.

Proposition 1.2. Consider an arbitrary ring R. Then there is a unique
identity in R.

Proof. Let e1 6= e2 ∈ R be two distinct identities. By definition of a ring
identity, we have that e1r = re1 = r and e2r = re2 = r for all r ∈ R.
We thus have e1e2 = e2e1 = e1 and e2e1 = e2e1 = e2. But this means that
e1 = e2 which is a contradiction. Hence R has a unique identity.

Example 1.3. Typical examples of rings are Z,Q,C all equipped with their
usual addition and multiplication.
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Example 1.4. Let n ∈ N, we define the ring Z/nZ of integers modulo n
as follows:
We first define an equivalence relation ∼ on X by

a ∼ b if a ≡ b (mod n)

Then elements of Z/nZ are the equivalence classes under this equivalence
relation:

[a] = {b ∈ Z | a ≡ b (mod n) }

Addition and multiplication is defined as [a] + [b] = [a + b] and [a][b] = [ab]
respectively.

Definition 1.5. Let R be a ring and X an indeterminate. We define the
ring of polynomials in X over R R[X] to be

R[X] = {c0 + c1X + c2X
2 + · · ·+ cnX

n | ci ∈ R ∀ 0 ≤ i ≤ n}

We define addition and multiplication on R[X] as follows(∑
i

ciX
i

)
+

(∑
i

c′iX
i

)
=
∑
i

(ci + c′i)X
i

(∑
i

ciX
i

)
×

(∑
i

c′iX
i

)
=
∑
r

(∑
i+j=r

cic
′
j

)
Xr

Remark.

1. We omit ciX
i when ci = 0

2. We write ciX
i as X i when ci = 1R

3. It is easily seen that R is a subset of R[X] when considering the map
r 7→ r + 0X + 0X2 + . . .

4. If Y is any other indeterminate then we have that (R[X])[Y ] = R[X][Y ] =
(R[Y ])[X]

Definition 1.6. Let R[X] be a polynomial ring and f ∈ R[X] an arbitrary
polynomial. We define the degree of f to be

deg(f) =

{
max{i | ci 6= 0} if ∃ j s.t cj 6= 0R

−∞ if otherwise
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Definition 1.7. Let (R,+R,×R) and (S,+S,×S) be two rings. We define
a ring homomorphism to be a function f : R → S such that for all
r1, r2 ∈ R

1. f(r1 +R r2) = f(r1) +S f(r2)

2. f(r1 × r2) = f(r1)×S f(r2)

3. f(1R) = 1S

Definition 1.8. Let (R,+,×) be a ring. We say that a ring (S,+S,×S) is
a subring of R if

1. S ⊆ R

2. +S|S×S = +R

3. ×S|S×S = ×R

Proposition 1.9. Let R be a ring and S ⊆ R a subring. Then 1S = 1R.

Proof. Consider s ∈ S ⊆ R. We have, by definition, that s×S 1S = 1S×S s =
s. Since S is a subring of R, we therefore have that s×R 1S = 1S ×R s = s.
Now, since R is a ring, we can also see that s ×R 1R = 1R ×R s = s. From
the two previous results, we have that s ×R 1S = s ×R 1R. Multiplying on
the left by s−1 we can see that 1S = 1R.

Definition 1.10. Let R be a ring. We say that a subset I ⊆ R is an ideal
of R if

1. (I,+) is a subgroup of (R,+)

2. i ∈ I, r ∈ R then ri ∈ I

We will denote an ideal by I / R. We say that for r ∈ R, (r) = {xr |x ∈ R}
is the ideal generated by r.

Definition 1.11. Let R be a ring and I / R an ideal. We say that I is a
principal ideal if there exists an element r ∈ R such that I = (r).
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Definition 1.12. Let R be a ring and I /R an ideal. We define the quotient
ring (R/I,+I ,×I) as follows:
We take the quotient of (R,+) by (I,+) to get the group (R/I,+I) where

R/I = {cosets of I in (R,+)} = {[r]I | r ∈ R}

and if r1, r2 ∈ R then

[r1]I +I [r2]I = [r1 + r2]I

The multiplication in R induces a multiplicative structure on R/I. If r1, r2 ∈
R then

[r1]I ×I [r2]I = [r1 × r2]

Example 1.13. Let n ∈ Z. Then the ring Z/nZ is a quotient ring.

Definition 1.14. Let r1 and r2 be elements of a ring R. We say that r1 6= 0
divides r2 if there exists r3 ∈ R such that r2 = r1r3. Equivalently, r1 divides
r2 if (r2) ⊆ (r1). We denote this by r1|r2.

Definition 1.15. Let r be an element of a ring R. We say that r is a unit
if r|1. Equivalently, r is a unit if the ideal generated by r is the ring R. We
also define the set

R× = {r ∈ R | r is a unit }

to be the set of units of R.

Remark. Given a ring R, it is easy to see that R× is a group under multi-
plication with identity 1R.

Definition 1.16. Let r be a non-zero element of a ring R. We say that r is
a zero divisor if there is a non-zero s ∈ R such that rs = 0.

Definition 1.17. A ring R is called a field if R× = R− {0}

Definition 1.18. A ring R is called an integral domain if it does not
contain any zero divisors.
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Definition 1.19. Let R be a ring. We define a homomorphism from the
integers to R by

fR : Z→ R

fR(n) =


1R + · · ·+ 1R︸ ︷︷ ︸

n times

if n > 0

− (1R + · · ·+ 1R)︸ ︷︷ ︸
n times

if n < 0

0 if n = 0

This is known as the characteristic homomorphism. We define the
characteristic of a ring R to be the unique non-negative integer n such
that ker(fR) = (n).

Proposition 1.20. Let R be an integral domain. Then the characteristic of
R is either 0 or a prime number.

Proof. Since R is an integral domain we have, by definition, that R has no
zero-divisors. Now suppose that the characteristic n of R is composite. By
definition of the characteristic of a ring we know that fR(n) = 0. Now
since n is composite, it must factor into some a, b ∈ N. Since fR is a ring-
homomorphism (by construction) we have that

fR(n) = 0

=⇒ fR(ab) = 0

=⇒ fR(a)fR(b) = 0

We have found zero-divisors fR(a), fR(b) ∈ R which is obviously a contra-
diction to the assumption that R is an integral domain. Hence n cannot be
composite and is either 0 or a prime.

Definition 1.21. Let I /R be an ideal of a ring R. We say that I is a prime
ideal if I 6= R and if for all r1, r2 ∈ R

r1r2 ∈ I =⇒ r1 ∈ I or r2 ∈ I

An element r ∈ R is called a prime element if the ideal (r) is a prime
ideal.
We can equivalently define a prime element r if r /∈ R× and if for all r1, r2 ∈
R

r|(r1r2) =⇒ r|r1 or r|r2
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Definition 1.22. An element r /∈ R× of a ring R is called irreducible if
for all r1 ∈ R

r1|r =⇒ r1 ∈ R×

Proposition 1.23. Let R be an integral domain. Then every prime element
in R is irreducible.

Proof. Suppose R is an integral domain and suppose that a prime element p
is reducible. By definition we have that p = ab for some a, b ∈ R. Obviously,
p divides ab and since p is a prime element we know, by definition, that
either p divides a or p divides b. Suppose, without loss of generality, that p
divides a. By definition of divisibility we have that a = pk for some k ∈ R.
Inserting this into p = ab, we have that

p = ab

=⇒ p = pkb

=⇒ p− pkb = 0

=⇒ p(1− kb) = 0

Since R is an integral domain, we know that R has no zero divisors. Hence
either p = 0 or 1− kb = 0.
If p = 0 then p is irreducible and we are done so assume that 1 − kb = 0.
It follows that 1 = kb and hence both k and b must be units. However this
contradicts the assumption that p is reducible as we require both a and b to
be non-unitary factors of p. Hence p must be irreducible.

Definition 1.24. A ring R is called a unique factorisation domain if it
is an integral domain and if every non-zero element can be uniquely written
as a product of irreducible elements.

Proposition 1.25. Let R be a unique factorisation domain. Then every
irreducible element of R is a prime.

Proof. Suppose R is a unique factorisation domain. Let p ∈ R be an irre-
ducible element and suppose that ab ∈ (p) for some a, b ∈ R. We have that
ab = kp for some k ∈ R. Since R is a unique factorisation domain, a, b and
k can be expressed as a unique product of irreducibles. Hence

α1 . . . αnβ1 . . . βm = γ1 . . . γlp (1.1)
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for some irreducible αi, βj, γk ∈ R. Since each factorisation of a, b and k
must be unique, the irreducibles on the left hand side of (1.1) must match
up with one on the right. Since p itself is an irreducible, it must match up
with an irreducible on the left hand side. Hence p must be a factor of either
a or b and thus a ∈ (p) or b ∈ (p) and p is a prime element.

Definition 1.26. A ring R is called a principal ideal domain if it is an
integral domain and every ideal of R is a principal ideal.

Proposition 1.27. Let R be a principal ideal domain. Then it is a unique
factorisation domain.

Definition 1.28. Let I / R be an ideal of a ring R. We say that I is a
maximal ideal if I 6= R and if I ⊆ J / R for some ideal J then I = J or
J = R.

Proposition 1.29. Let R be a ring and I / R an ideal. Then

1. I is a prime ideal if and only if the quotient ring R/I is an integral
domain

2. I is a maximal ideal if and only if the quotient ring R/I is a field.

3. Every maximal ideal is also a prime ideal

Proof.

Part 1:

=⇒ : Let R be a ring and I / R a prime ideal. We want to show that R/I
is an integral domain. We first note that from the definition of cosets, for
an ideal I and an element r ∈ R, r + I = I =⇒ r ∈ I and that I is itself
the zero element of the quotient ring. Now suppose that (r + I)(s + I) = I
for some r+ I, s+ I ∈ R/I. By the definition of multiplication in a quotient
ring, it follows that rs + I = I. From the properties of cosets mentioned
before, this means that rs ∈ I. Now since I is a prime ideal, we have that
either r ∈ I or s ∈ I. But this just means that r + I = I or s+ I = I which
is exactly what it means for R/I to be an integral domain.

⇐= : Now suppose that R/I is an integral domain. We need to show that
I is a prime ideal. Let a, b ∈ R be such that ab ∈ I. By the definition of the
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quotient ring R/I, we have that ab + I = I. It follows from the definition
of multiplication in a quotient ring that (a+ I)(b+ I) = I. Since R/I is an
integral domain, this must mean that either a + I = I or b + I = I. Thus
a ∈ I or b ∈ I. We have shown that if ab ∈ I then a ∈ I or b ∈ I, hence I is
a prime ideal.

Part 2:

=⇒ : Let R be a ring and I /R a maximal ideal. We want to show that R/I
is a field. In particular, we have to show that (R/I)× = R/I−0R/I = R/I−I.
Let a+ I ∈ R/I be a non-zero element. We want to show that there exists a
b+I ∈ R/I such that (a+I)(b+I) = 1+I. By the definition of multiplication
in a quotient ring, we have that (a + I)(b + I) = ab + I = 1 + I. Hence it
suffices to show that there exists b ∈ R such that ab − 1 ∈ I. Now consider
the ideal

J = {ar + i | i ∈ I}

for some r ∈ R. Obviously, this ideal properly includes the ideal I. But I is a
maximal ideal so J must be equal to R. Hence ar+ i = 1 for some r ∈ R and
i ∈ I. This implies that ar − 1 ∈ I. Passing back to the quotient ring, we
see that (ar−1) + I = I which implies that ar+ I = 1 + I. By the definition
of multiplication in the quotient ring, we have that (a + I)(r + I) = 1 + I.
Hence we have found a b, namely r, for which a + I has an inverse in the
quotient ring. Hence the quotient ring is a field.

⇐= : Now suppose that R/I is a field. In particular, every non-zero element
of R/I has an inverse. We want to show that I is a maximal ideal. Consider
J % I an ideal of R properly containing I and let a ∈ J such that a /∈ I. It
follows that a+ I 6= I and hence, since R/I is a field, (a+ I)(b+ I) = 1 + I
for some b ∈ R. By the definition of multiplication in the quotient ring, we
have that ab− 1 ∈ I. Denote i = ab− 1. We can see that 1 = ab−m. Since
a,m ∈ J , it follows that 1 ∈ J which must mean that J = R. Hence I is a
maximal ideal.

Part 3: Let I be a maximal ideal of R. By part 2, we have that R/I is a
field. Since all fields are integral domains, we have that R/I is an integral
domain. By part 1, this must mean that I is a prime ideal.



CHAPTER 1. RING THEORY REVIEW 9

Lemma 1.30. Let R and S be two rings and f : R → S a homomorphism
of rings. Then

1. ker(f) = {r ∈ R | f(r) = 0} is an ideal of R

2. Im(f) is a subring of S

3. f induces an isomorphism of rings

R/ker(f)→ Im(f)

[r]ker(f) 7→ f(r)

for all r ∈ R.



Chapter 2

Polynomial rings

Definition 2.1. Let f(X) = (c0, c1, . . . ) =
∑

i ciX
i be a non-zero poly-

nomial. The leading term (leading coefficient) if f(X) is defined to be
cdX

d(cd). We say that f(X) is monic if the leading coefficient is 1.

Lemma 2.2. Let R be a ring and f1, f2 ∈ R[X] two polynomials. Then

1. deg(f1 + f2) ≤ max{deg(f1), deg(f2)}

2. deg(f1f2) ≤ deg(f1) + deg(f2) with equality holding if R is an integral
domain.

Proof. If either f1 or f2 are the zero polynomial then we are done hence sup-
pose that f1, f2 6= 0. Let f1(X) =

∑
i ciX

i and f2(X) =
∑

i diXi for some
constants ci, di ∈ R.

Part 1: By the definition of addition of polynomials, we have that

deg (f1(X) + f2(X)) = deg

(∑
i

(ci + di)X
i

)
By the definition of the degree of a polynomial, it follows that

deg

(∑
i

(ci + di)X
i

)
= max{i | ci + di 6= 0}

≤ max
{

max{i | ci 6= 0},max{i | di 6= 0}
}

= max{deg(f1), deg(f2)}

10
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Part 2: Let cnX
n be the leading term of f1(X) and dmX

m the leading term
of f2(X). Then by the definition of polynomial multiplication, we have that
f1(X)f2(X) = en+mX

n+m + · · · + e0 for some constants ei ∈ R. Obviously,
the degree of f1(X)f2(X) can be no greater than n+m. Hence we have that
deg(f1(X)f2(X)) 6> deg(f1) + deg(f2).
Since the ring R could have zero divisors, it could happen that 0 = en+m =
cndm and hence deg(f1(X)f2(X)) < deg(f1(X)) + deg(f2(X)). Hence it
follows that deg(f1(X)f2(X)) ≤ deg(f1) + deg(f2).
In the case where R is an integral domain, it cannot have any zero divisors
meaning en+m cannot be 0 hence the degree of f1(X)f2(X) can never be less
than n+m. We are thus left with deg(f1(X)f2(X) = deg(f1) + deg(f2)

Corollary 2.3. Let R be a ring. We have that

1. R is an integral domain if and only if R[X] is an integral domain

2. R× ⊆ R[X]× with equality if R is an integral domain

Proof.

Part 1:

=⇒ : Assume R is an integral domain and consider two polynomials f, g ∈
R[X]. Suppose that fg = 0R with f, g 6= 0R. We can write f = anX

n+· · ·+a0
and g = bnX

n+· · ·+b0 for some ai, bi ∈ R. We know that the leading term of
fg, by definition of multiplication of polynomials is anbnX

n. Since fg = 0R,
we require that anbn = 0R. Since R is an integral domain, either an = 0R
or bn = 0R. Suppose, without loss of generality that an = 0R. This is a
contradiction however as we assumed that f 6= 0 =⇒ an 6= 0R. Hence if
fg = 0R then either f = 0R or g = 0R and R[X] is an integral domain.

⇐= : Assume R[X] is an integral domain and consider a, b ∈ R. Now
consider the two polynomials f(X) = a and g(X) = b in R[X]. Assume that
fg = 0R. This is equivalent to the assumption that ab = 0R. Since R[X]
is an integral domain, this means either f(X) = a = 0 or f(X) = b = 0,
meaning that R is an integral domain.

Theorem 2.4. Let R be a field and f, g ∈ R[X] two non-zero polynomials.
Then there exists q, r ∈ R[X] such that f = qg + r with deg(r) < deg(f).
Furthermore, q and r are uniquely determined by f and g.
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Proof. If deg(f) < deg(g), we can take q = 0 and r = f and we are done so
assume that deg(f) ≥ deg(g).
Now set f(X) = anX

n + · · · + a0 and g(X) = bmX
m + · · · + b0 for some

ai, bi ∈ R. We will prove the theorem by induction on the degree of f. For
the base step, let deg(f) = 1 and we can take q = an

bn
and r = f − qg.

Now assume that the theorem is true for deg(f) = k − 1. We want to show
that it is true for deg(f) = k.
Consider the polynomial

h = f − an
bm
Xn−mg

= anX
n + · · ·+ a0 −

an
bm
Xn−m [bmX

m + · · ·+ b0]

= anX
n + · · ·+ a0 −

[
anX

n +
anbm−1
bm

Xn−1 + · · ·+ anb0
bm

Xn−m
]

=
anbm−1
bm

Xn−1 + · · ·+ anb0
bm

Xn−m + · · ·+ a0

Obviously, this polynomial has degree k−1 and by the induction hypothesis,
there exists a q1 and r1 such that h = gq1 + r1. Now we have that

h = gq1 + r1

=⇒ f − an
bm
Xn−mg = gq1 + r1

=⇒ f = gq1 +
an
bm
Xn−mg + r1

=⇒ f = g(q1 +
an
bm
Xn−m) + r1

Hence we have found a q = q1 + an
bm
Xn−m and r = r1 hence the theorem is

true for deg(f) = k.
Now assume that f = gq1 + r1 and f = gq2 + r2 for distinct q1, q2 and r1, r2
with deg(r1) < g and deg(r2) < g. We have that

gq1 + r1 = gq2 + r2

=⇒ g(q1 − q2) = r2 − r1

Hence g|(r2−r1) but since deg(r2−r1) < deg(g), we must have that r2−r1 =
0 =⇒ r2 = r1. Furthermore, we then have that g(q1 − q2) = 0 and since
g 6= 0, we must have q1 = q2.
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Corollary 2.5. Let R be a field and f, g ∈ R[X] not both zero. Then there
exists a unique h ∈ R[X] such that

1. h|f and h|g

2. h is monic

3. the degree of h is maximal among all l ∈ R[X] such that l|f and l|g

Such a polynomial is called the greatest common divisor of f and g.

Proof. Consider the set

S = {a(X)f(X) + b(X)g(X) | a(X), b(X) ∈ R[X], af + bg 6= 0}

and let h1(X) = a1(X)f(X) + b1(X)g(X) ∈ S be the polynomial of least
degree. If the leading coefficient is not 1R, we can multiply though by its
inverse, say a−1n , to obtain a monic polynomial h(X) = a(X)f(X)+b(X)g(X)
where a(X) = a−1n a1(X) and b(X) = a−1n b1(X). We claim that h(X)|f(X)
and h(X)|g(X).
By the division algorithm for polynomials, we have that

f(X) = h(X)q(X) + r(X), deg(r(X)) < deg(h(X))

=⇒ r(X) = f(X)− h(X)q(X) (2.1)

After substituting h(X) into (2.1), we are left with

r(X) = f(X)(1− q(X)a(X))− q(X)b(X)g(X)

Now since deg(r(X)) < deg(h(X)) and h(X) is, by assumption, the polyno-
mial of least degree in S, we have that r(X) /∈ S. This implies that r(X)
must equal 0.
We thus have that f(X) = h(X)q(X) meaning that h(X)|g(X). A similar
argument can be applied to g(X) to arrive at h(X)|g(X).
The polynomial h(X) is monic by construction so it remains to show the
third part.
Consider a polynomial l(X) such that l(X)|f(X) and l(X)|g(X). Then we
have that l(X)|(a(X)f(X) + b(X)g(X)) for all a(X), b(X) ∈ R[X]. In par-
ticular, l(X) must divide h(X). Hence h(X) must be the polynomial of
maximal degree dividing both f(X) and g(X).
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Corollary 2.6. If R is a field then R[X] is a principal ideal domain.

Proof. Consider an ideal I / R[X]. If I is the zero ideal then it is principal
and we are done, hence let I 6= {0}.
Now consider the set

S = {f(X) ∈ I | f(X) 6= 0}

and choose h(X) ∈ S such that h(X) is of minimal degree. We claim that
I = (h(X)). It suffices to show that f(X) = h(X)q(X) for some q(X) ∈
R[X].
Since R is a filed, we can apply the division algorithm for polynomials and
we have that

f(X) = q(X)h(X) + r(X), deg(r(X)) < deg(h(X))

for some q(X), r(X) ∈ R[X]. It follows that r(X) = f(X) − q(X)h(X).
Since f(X), h(X) ∈ I, we can see that r(X) ∈ I. But r(X) has degree
strictly less than h(X) and h(X) is a non-zero polynomial of least degree,
hence r(X) = 0.

Corollary 2.7. Let R be a field and consider a polynomial g(X) ∈ R[X]\R.
Then g(X) is irreducible if and only if the ideal generated by g(X) is maximal
ideal of R[X].

Proof.

=⇒ : Let R be a field and g(X) ∈ R[X]\R an irreducible polynomial.
We want to show that (g(X)) is maximal. Consider a polynomial f(X) ∈
R[X] such that (g(X)) ⊆ (f(X)) $ R[X]. We therefore have that for some
polynomial h(X) ∈ R[X], g(X) = f(X)h(X).
Now since f(X) is irreducible, we have that either h(X) ∈ R[X]× or g(X) ∈
R[X]×. But (f(X)) is a proper principal ideal and hence we cannot have
that f(X) ∈ R[X]×. Hence h(X) ∈ R[X]×. Therefore (f(X)) = (g(X)) and
the ideal generated by g(X) is maximal across all proper ideals of R[X].

⇐= : Now suppose that (g(X)) is maximal. We want to show that
(g(X)) is irreducible. Assume that (g(X)) is reducible and hence g(X) =
f(X)h(X) for some non-units f(X), h(X) ∈ R[X]. Now since neither f(X)
and h(X) are non-units, we have that (g(X)) $ (f(X)) which contradicts
the maximality of (g(X)). Hence g(X) must be irreducible.
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Definition 2.8. Let f(X) =
∑d

i=0 ciX
i be a polynomial in R[X]. We define

the evaluation map at r to be the map

evr : R[X]→ R

f(X) 7→ f(r)

Lemma 2.9. Let R be a ring and S ⊆ R a subring. Consider r ∈ R. The
smallest subring of R which contains both S and r is S[R] = evr|S[X].

Lemma 2.10. Consider a ring R and the evaluation map evr for some r ∈ R
and f(X) =

∑d
i=0 ciX

i ∈ R[X]. Then the kernel of the map evr is the
principal ideal (X − r).

Proof. By the definition of the kernel, we have that the kernel of the evalu-
ation map is

ker(evr) = {f(X) ∈ R[X] | f(r) = 0}

Obviously, this corresponds to all polynomials that have r ∈ R as a root
which is equivalent to all polynomials generated by the ideal (X − r).

Definition 2.11. Consider a polynomial f ∈ Z[X]. We say that f is prim-
itive if deg(f) ≥ 1 and if the greatest common divisor of the coefficients of
f is 1.

Lemma 2.12. Consider two primitive polynomials f =
∑

i aiX
i, g =

∑
i biX

i ∈
Z[X]. Then their product fg is a primitive polynomial

Proof. Let h(X) = f(X)g(X). Suppose that h(X) is not primitive. Then
there exists a prime p that is a common divisor of all the coefficients of h(X).
Since f(X) and g(X) are primitive, p cannot be a divisor of all of the ai or all
of the bi. Let arX

r and bsS
r be the terms of highest degree whose coefficient

p does not divide, respectively in f(X) and g(X). Now consider the term of
degree r + s in h(X). By the definition of multiplication of polynomials, its
coefficient is given by ∑

k+l=r+s

akbl

This sum contains the term arbs which is not divisible by p. Hence the entire
sum is not divisible by p. This is a contradiction to the assumption that p is
a common divisor of all the coefficients of h(X). Hence there does not exist
a prime which divides all the coefficients of h(X), thus it is primitive.
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Proposition 2.13. Consider a primitive polynomial f ∈ Z[X]. Then f is
irreducible in Z[X] if and only if it is irreducible in Q[X].

Proof.

=⇒ : Let f be a primitive polynomial that is irreducible in Z[X] and let
f(X) = g(X)h(X) where g(X), h(X) ∈ Q[X]. We can choose a

b
, c
d
∈ Q such

that a
b
f(X) and c

d
g(X) are primitive. Hence, by the previous lemma, ac

bd
f(X)

is a primitive polynomial. But f(X) is itself, by assumption, a primitive
polynomial. Thus ac

bd
= 1.

We therefore have that ab
cd
g(X)h(X) = (a

b
g(X))( c

d
h(X)) is a factorisation of

f(X) in Z[X]. Since f(X) is irreducible, we must either have that a
b
g(X) ∈

Z× or c
d
h(X) ∈ Z×. Hence g(X) ∈ Q[X]× or h(X) ∈ Q[X]×.

⇐= : Now assume that f is a primitive polynomial that is irreducible in
Q[X]. Since Z ⊆ Q, it follows that f must be irreducible in Z[X].

Remark. The two previous lemmas are together referred to as Gauss’ Lemma.

Proposition 2.14. (Eisenstein’s Criterion)
Let f(X) =

∑n
i=0 ciX

i be a primitive polynomial of degree n in Z[X]. If there
exists a prime p such that

1. p|ci for 0 ≤ i < n

2. p2 does not divide c0

then f(X) is irreducible in Q[X].

Proof. Consider a prime p satisfying the hypothesis and the image f(X) of
f(X) under the map

Z[X]→ Fp[X]

ci 7→ ci (mod p)

Since p|ci for 0 ≤ i < n and f(X) is a primitive polynomial, the leading term
of f(X) must be 1 while the other terms are congruent to 0 modulo p. Hence
we have that f(X) = Xn.
Now suppose that f(X) is reducible. We have that f(X) = g(X)h(X) for
some g(X), h(X) ∈ Z[X] and deg(f) > deg(g), deg(h). Then g(X) = Xm
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and h(X) = Xn−m for some 0 < m < n. Hence the constant term of g(X)
and h(X) are both divisible by p. This would imply that the constant term of
f is divisible by p2 which contradicts the assumptions for the prime p. Hence
f must be irreducible.



Chapter 3

Field Extensions

Definition 3.1. Let L be a field and K ⊆ L a subfield. We define the field
extension of L over K to be the pair (K,L) and denote it by L/K.

Remark. We can consider a field L to be a vector space over one of its
subfields K. The elements of L are the vectors and the elements of K are the
scalars

Definition 3.2. Let L/K be a field extension. We define the degree of K/L
to be the dimension of L as a K-vector space. It is denoted by [L : K].

Example 3.3. Let K be a field and f(X) ∈ K[X] an irreducible polynomial
of positive degree. Then K[X]/(f(X)) is a field by previous results and the
map

if : K → K[X]/(f(X))

k 7→ [k]f(X)

is a ring homomorphism. This gives a field extension (K,K[X]/(f(X))
whose degree is equal to deg(f).

Theorem 3.4. (Tower Law)
Consider two field extensions L/K and M/L. Then M/K is a field extension
and

[M : K] = [M : L][L : K]

18
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Proof. Let {mα |α ∈ I} be an L-basis of M and {lβ | β ∈ J} be a K-basis of
L. We will show that {mαlβ |α ∈ I, β ∈ J} is a K-basis of M.
Consider m ∈M . Then

m =
n∑
i=1

ximαi

for some xi ∈ L. Now we can write each xi as

xi =
k∑
j=1

yijlβj

for some yij ∈ K. Thus

m =
∑
i

∑
j

yijmαi
lβj

Hence the set {mαlβ |α ∈ I, β ∈ J} spans M as a K-vector space.
Now, if ∑

i,j

aijmαi
lβj = 0

with aij ∈ K, then

∑
i

(∑
j

aijlβj

)
mαi

= 0

Since {mα |α ∈ I} is linearly independent over L, we can see that
∑

j aijlβj =
0 for each i. Again, since {lβ | β ∈ J} is linearly independent over K, we
can see that aij = 0 for all i, j. Hence {mαlβ |α ∈ I, β ∈ J} is linearly
independent and thus it forms a K-basis for M. The cardinality of this set
is exactly equal to the product of the cardinalities of {mα |α ∈ I} and
{lβ | β ∈ J} hence it also follows that

[M : K] = [M : L][L : K]



Chapter 4

Algebraic Extensions

Definition 4.1. Let L/K be a field extension. An element l ∈ L is said to
be algebraic over K if there exists a non-zero polynomial f ∈ K[X] such
that f(l) = 0. If there exists no such polynomial, the element l is said to
be transcendental over K. The extension L/K is said to be algebraic if
every element of L is algebraic over K.

Example 4.2. Let L/K be a field extension and l ∈ L. Consider the evalu-
ation at l

evL : K[X]→ L

f(X) 7→ f(l)

It follows from this that l is transcendental over K if and only if evl is injec-
tive.

Proposition 4.3. Let L/K be a finite dimensional field extension. Then
L/K is algebraic.

Proof. Let L/K be a finite extension and l ∈ L. Consider the set

{1, l, l2, . . . }

If this set is finite then ln = 1 for some n ∈ N. This implies that l is a root
of the polynomial f(X) = Xn − 1 ∈ K[X] and hence l is algebraic over K.
If the set is infinite then it cannot be linearly independent over K. Hence we
have that ∑

i

ail
i = 0

20
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for some ai ∈ K. Therefore, l is a root of f(X) =
∑

i aiX
i ∈ K[X] and l is

algebraic over K.

Proposition 4.4. Let L/K be a field extension and l ∈ L be algebraic over
K. Then there is a unique polynomial p(X) ∈ K[X] such that

1. p(X) is monic

2. p(l) = 0

3. deg(p(X)) is minimal among the polynomials q(X) ∈ K[X] satisfying
q(l) = 0

Furthermore, this polynomial is irreducible and is called the minimal poly-
nomial of l over K. It is denoted by minl,K(X).

Proof. Consider the evaluation map

evl : L[X]→ L

f(X) 7→ f(l)

Let e = evl|K[X] and I = ker(e) ⊆ K[X]. Since l is algebraic over K, the
ideal I is non-trivial. It is also not the whole ring K[X] since 1K maps to
itself and is hence not in the kernel. Therefore, since a polynomial ring is
a principal ideal domain, we have that I = (p(X)) for some non-constant
polynomial p(X) ∈ K[X].
Now assume that p(X) is monic. Obviously, p(X) satisfies all three condi-
tions listed in the proposition.
To show that p(X) is irreducible, assume that it is reducible. Then p(X) =
f(X)g(X) for some non-units f(X), g(X) ∈ K[X] with deg(p) > deg(f), deg(g).
Then p(l) = f(l)g(l) = 0. This means that either f(l) = 0 or g(l) = 0. But
this contradicts the fact that p(X) is the polynomial of least degree in K[X]
where l is a root. Therefore, p(X) is irreducible in K[X].

Proposition 4.5. Let L/K be a field extension and l ∈ L algebraic. Then
there exists a unique isomorphism of rings

θl : K[X]/(p(X))→ K[l]

[X](p(X)) 7→ l

[k](p(X)) 7→ k, ∀k ∈ K

In particular, K[l] is a field and the degree of the extension K[l]/K is equal
to deg(p(X)).
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Proposition 4.6. Let L/K be a field extension and L ∈ L transcendental.
Then there exists a unique isomorphism of rings

θk : K[X]→ K[l]

X 7→ l

k 7→ k, ∀k ∈ K

In particular, K[l] is not a field and the degree of the field extension is infinite.

Definition 4.7. Let L/K be a field extension and l1, l2 ∈ L. l1 and l2 are
said to be conjugates if they are both algebraic over K and have the same
minimal polynomial.

Corollary 4.8. Let K be a field, f(X) ∈ K[X] irreducible and L1, L2 exten-
sions of K. If l1 and l2 are roots of f(X) in L1 and L2 respectively then there
exists a unique isomorphism of fields

θ : K[l1]→ K[l2]

l1 7→ l2

k 7→ k, ∀k ∈ K

Proof. This follows by considering the maps

K[L1]← K[X]/(p(X))→ K[L2]

Definition 4.9. Let R be an integral domain and consider the set { r
s
| r, s ∈

R, s 6= 0}. We define an equivalence relation r
s
∼ r′

s′
⇐⇒ rs′ = r′s. We

then define

Frac(R) =
{r
s
| r, s ∈ R, s 6= 0

}
/ ∼

to be the field of fractions of R.

Lemma 4.10. Let R be an integral domain. Then

1. Frac(R) is a field

2. R injects into Frac(R) with the map r → r
1R
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3. If σ : R→ K is an injective ring homomorphism then there is a unique
ring homomorphism σ̃ : Frac(R)→ K such that the following diagram
commutes

R K

Frac(R)

σ

σ̃

Example 4.11. Frac(Z) ∼= Q

Example 4.12. If R is a field then Frac(R) ∼= R

Remark. Let L/K be a field extension and l1, . . . , ln elements of L. Then
we write

K(l1, . . . , ln) := Frac(K[l1, . . . , ln])

Definition 4.13. Let L/K be a field extension. We say that L is generated
by l1, . . . , ln over K if L = K(l1, . . . , ln). The elements l1, . . . , ln are called
generators of L over K.

Definition 4.14. Let L/K be a field extension. We say that L/K is simple
if L is generated by a single element over K.



Chapter 5

Embeddings of Fields

Definition 5.1. Let K be a field and f(X) ∈ K[X] a polynomial. We say
that f(X) splits completely in K if

f(X) = c(X − k1) . . . (X − kn)

for some c, k1, . . . , kn ∈ K.

Proposition 5.2. Let K be a field and f(X) ∈ K[X] a polynomial. Then
there exists a field extension L/K of finite degree such that f(X) splits com-
pletely in L[X].

Proof. We prove the theorem by induction on deg(f). For the basis case,
assume deg(f) = 1. By definition, f(X) splits completely in K[X]. Now
assume that the proposition is true for any polynomial f(X) ∈ K[X] with
deg(f(X)) ≤ n. Hence there exists a field extension L of K in which f(X)
splits completely.
We now consider a polynomial f(X) where deg(f(X)) = n + 1. If f(X) is
reducible then we can write f(X) = g(X)h(X) where deg(g), deg(h) ≤ n.
By the induction hypothesis, we can find a field extension L1 of K in which
g(X) splits completely. We can again apply the induction hypothesis to L1

and h(X) to obtain a field L2 in which h(X) splits completely. Hence f(X)
splits completely in L2 and we are done.
On the other hand, if f(X) is irreducible over K[X] then we can take the
finite extension L1 = K[X]/(f(X)). Then L1 contains a root of f(X). Hence
f(X) is reducible over L1 and by the previous case, we can construct a finite
extension of L1 containg all roots of f(X).

24
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Definition 5.3. Let K be a field and f(X) ∈ K[X] a polynomial. Consider
an extension L/K such that f(X) splits completely in L[X], say f(X) =
c(X − l1) . . . (X − ln) where c, l1, . . . , ln ∈ L. The subfield of L generated by
l1, . . . , ln over K is called a splitting field of f(X) over K.

Definition 5.4. Let L1/K and L2/K be two field extensions. A K-embedding
(K-isomorphism) from L1 to L2 is an injective (bijective) ring homomor-
phism that fixes all elements of K:

θ : L1 → L2

such that θ|k is the identity map.

Remark. Let θ : L1 → L2 be a ring homomorphism. It extends uniquely to
a ring homomorphism

θ : L1[X]→ L2[X]∑
i

ciX
i 7→

∑
i

θ(ci)X
i

We note that

1. If θ is injective then θ is injective

2. Let f(X) ∈ L1[X]. An element l1 ∈ L1 is a root of f(X) if and only if
θ(l1) is a root of θ(f(X))

3. Assume that θ is bijective. The polynomial f(X) is irreducible in L1[X]
if and only if θ(f(X)) is irreducible in L2[X]

Definition 5.5. Let L/K be a field extension and σ : LtoL an automorphism.
We say that σ is a K-automorphism if σ fixes every element of K.

Proposition 5.6. Let L/K be an algebraic field extension. Then every K-
embedding of L into itself is necessarily a K-automorphism.

Proof. Since every ring homomorphism is injective, it suffices to show that
any K-endomorphism of L is surjective. Let σ be a K-embedding of L. Since
σ is a K-embedding, we have that for all f [X] ∈ K[X], σ(f(X)) = f(X).
Hence l is a root of f(X) if and only if σ(l) is a root of f(X).
Consider l ∈ L. We want to show that there exists l1 ∈ L such that σ(l1) = l.
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Since L/K is an algebraic extension, there exists a polynomial f(X) ∈ K[X]
of minimal degree such that f(l) = 0. Let {l1, . . . , lr} be all the roots of
the polynomial f(X) in L. Then σ induces an injective map from {l1, . . . , lr}
to itself. Since this is a finite set, the induced map must also be surjective.
Hence l must be in the image of σ.

Definition 5.7. Let L/K be a field extension. We write AutK(L) for the
group of K-automorphisms of L.

Theorem 5.8. (Artin’s Extension Theorem)
Let K1 and K2 be two fields, σ : K1 → K2 a field isomorphism and f ∈
K1[X] an irreducible polynomial. Furthermore, let α be a root of f(X) in an
extension L1 of K1 and β a root of σ(f(X)) in an extension L2 of K2. Then
there exists a unique isomorphism of fields

τ : K1(α)→ K2(β)

such that τ(α) = β and τ |K1 = σ. This is shown by the following diagram

L1 L2

K1(α) K2(β)

K1 K2

τ
∼

σ
∼

Proof. We note that σ induces an isomorphism, which we again denote by σ:

σ : K1[X]/(f(X))→ K2[X]/(σ(f(X)))

Then the proposition follows directly from Proposition 4.5 and the following
diagram

L1 L2

K1(α) K1[X]/(f) K2[X]/(σ(f)) K2(β)

K1 K2

∼ σ
∼

∼

σ
∼
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Corollary 5.9. Let K1 and K2 be two fields and σ : K1 → K2 an isomor-
phism of fields. Consider a polynomial f ∈ K1[X] and choose splitting fields
L1 for f over K1 and L2 for σ(f) over K2. Then there exists an isomorphism

τ : L1 → L2

such that τK1 = σ. In particular, if K1 = K2 = K and σ = idK, we have
that any two splitting fields for f over K are K-isomorphic.

Proof. We prove the corollary by induction on deg(f). If deg(f) = 1 then
L1 = K1 and L2 = K2 and there is nothing to prove. Now assume that the
corollary is true for deg(f) < n.
Let f be a polynomial of degree n. If f is reducible then take an irreducible
factor p of f in K1[X]. Then σ(p) is an irreducible factor of σ(f) in K2[X].
Now let M1 ⊆ L1 be the splitting field of p and M2 ⊆ the splitting field of
σ(p). Then by the induction hypothesis, there is an isomorphism

τ ′ : M1 →M2

such that τ ′|K1 = σ. Next we can apply the induction hypothesis to M1,M2

and τ ′ to get an isomorphism

τ : L1 → L2

such that τ |M1 = τ ′ =⇒ τ |K1 = σ.
Now we consider the case where f is irreducible. Let α be a root of f in L1

and β a root of σ(f) in L2. Then by Artin’s Extension Theorem, we have
that there is an isomorphism

τ ′ : K1(α)→ K2(β)

such that τ ′|K1 = σ. Over the field K1(α), the polynomial f is reducible and
hence we are done by the previous case.

Theorem 5.10. Let σ : K1 → K2 be a field embedding and let L1/K1 be
a finite extension. Then for any given extension M/K2 there are at most
[L1 : K1] distinct embeddings

τ : L1 →M

such that τ |K1 = σ
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Proof. We prove the theorem by induction. Let L1 = K1(α1, . . . , αr) for
some α1, . . . , αr ∈ L1. We first prove the result for K1(α1)/K1.
Let f1(X) ∈ K1[X] be the minimal polynomial of α1 over K1. Let σ(f1) =
f2(X) ∈ K2[X]. If f2 has no roots in M then there is no embedding of K1(α1)
in M. More generally, if {β1, . . . , βm} are the roots of f2 in M, then there are
m embeddings τ1, . . . , τm

τi : K1(α1)→M

such that τi|K1 = σ and τi(a1) = βi. Moreover, these are all the embeddings
since α1 has to map to a root of f2 and the image of α1 determines τ . Since
m ≤ deg(f1) = [K1(α1) : K1], the theorem is true for K1(α1)/K1.
Now assume that the theorem is true for K1(α1, . . . , αs)/K1 for some 1 ≤
s < r. Let L0 = K1(α1, . . . , αs) and fix an embedding τ : L0 →M such that
τ |K1 = σ. Then by what we have just proven, we have that the number of
embeddings

τ ′ : L0(αs+1)→M

such that τ ′|L0 = τ is less than or equal to [L0(αs+1) : L0]. Hence the number
of embeddings

τ : L0(αs+1)→M

such that τ |K1 = σ is less than or equal to [L0(αs+1) : L0][L0 : K1] =
[L0(αs+1) : K1)].



Chapter 6

Separable Extensions

Definition 6.1. Let f(X) ∈ K[X] be a polynomial. We say that f(X) is
separable if it has deg(f(X)) distinct roots in every splitting field over K.
If L/K is a field extension, we say that an element l ∈ L is separable over
K if it is algebraic over K and its minimal polynomial p(X) is separable. We
say that an extension L/K is separable if it is algebraic and every element
of L is separable over K.

Definition 6.2. Let f(X) = cnX
n + · · ·+ c0 be a polynomial. We define its

derivative f ′(X) to be

f ′(X) = ncnX
n−1 + (n− 1)cn−1X

n−2 + · · ·+ c1

Lemma 6.3. Consider a field K, an element a ∈ K and a polynomial p(X) ∈
K[X]. Then a is a multiple root of p(X) if and only if p(a) = 0 and p′(a) = 0.

Proof.

=⇒ : Let a be a multiple root of p(X). Then p(X) = (X − a)nf(X) for
some f(X) ∈ K[X] and n ≥ 2. Obviously, p(a) = 0.
Now, by the product rule and chain rule, we see that p′(X) = n(X −
a)n−1f(X) + (X − a)nf ′(X). Hence p′(a) = 0.

⇐= : Now assume that p(a) = 0 and p′(a) = 0 and assume that the a is
not a multiple root of p(X). Then we have that p(X) = (X − a)f(X) for
some f(X) ∈ K[X] where a is not a root of f(X). By the product rule, we
have that p′(X) = f(X) + (X − a)f ′(X). Now, p′(a) = f(a). But a is not
a root of f(X) hence f(X) 6= 0 which is a contradiction to the assumption
that p′(a) = 0. Hence a must be a multiple root of p(X).

29
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Definition 6.4. Let K be a field. We say that K is perfect if either char(K) =
0 or char(K) = p for some prime p and the map

σ : K → K

x 7→ xp

is an isomorphism.

Example 6.5. Fp = Z/pZ is a perfect field.

Example 6.6. Let Fp(t) be the field of fractions of the polynomial ring Fp[t].
Then Fp(t) is not a perfect field.

Proposition 6.7. Let K be a perfect field and L/K a field extension. If
l ∈ L is algebraic over K then all the roots of the minimal polynomial of l
over K are simple.

Proof. Let f(X) ∈ K[X] be the minimal polynomial of l over K. Then f(X)
is irreducible over K. We also note that deg(f) > deg(f ′). Now let a be
a root of f . By the previous lemma, we have that a is a multiple root if
and only if f ′(a) = 0. Since f is irreducible over K, f must also be the
minimal polynomial of a over K. If f ′(a) = 0, then f(X)|f ′(X). But as
deg(f) > deg(f ′), we must have that f ′(X) = 0. This is not possible in a
characteristic 0 field. Hence if char(K) = 0, f ′(a) 6= 0 and all roots of f are
simple roots.
If char(K) = p and f ′(a) = 0 then f ′(X) = 0. In this case, we can see that
f(X) = h(Xp) for some h(X) ∈ K[X]. Let h(X) = anX

n + · · · + a0. Since
K is a perfect field of characteristic p there exists bi ∈ K such that ai = bpi
for all 0 ≤ i ≤ n. Hence

f(X) = h(Xp) = anX
np + · · ·+ a0

= bpnX
np + · · ·+ bp0

= (bnX
n + · · ·+ b0)

p

But this cannot happen since f(X) is irreducible. Hence f ′(a) 6= 0 and
all the roots of f are simple roots.

Corollary 6.8. Every algebraic extension of a perfect field is separable.
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Proof. Let L/K be an algebraic extension and K a perfect field. Then every
l ∈ L is algebraic over K. By the previous proposition, we have that the
minimal polynomial of l over K has no repeated roots. Hence every element
of L is separable over K and L/K is a separable extension.

Theorem 6.9. Let L = K(α1, . . . , αn) be a finite extension of K. Let fi be
the minimal polynomial of αi over K. Let σ : K → K1 be an isomorphism
of fields and M an extension of K1. Assume that σ(fi) splits completely in
M for every 1 ≤ i ≤ n. Then L/K is separable if and only if the number of
embeddings τ : L→M such that τ |K = σ is equal to [L : K].

Proof.

=⇒ : Assume that L/K is separable. By Theorem 5.10, we know that the
number of embeddings τ such that τ |K = σ is less than or equal to [L : K].
We must show equality. We first show the result for K(α1)/K. As L/K is
separable, the minimal polynomial f1 of α1 has simple roots. Hence σ(f1),
which we denote by g1, has simple roots in M . Let {β1, . . . , βm} be the roots
of g1 in M . Then r = deg(g1) = deg(f1). For every 1 ≤ j ≤ r, there is an
embedding

τj = K(α1)→M

such that τj|K = σ and τj(α1) = βi. Moreover, τj 6= τ ′j if j 6= j′. Hence we
have [K(α1) : K] = deg(f1) = r embeddings of K(α1) in M whose restriction
to K is σ.
Now assume that the result is true for K(α1, . . . , αs)/K for some 1 ≤ s < n.
Denote L0 = K(α1, . . . , αn). Now fix an embedding τ : L0 → M such
that τ |K = σ. Let p(X) be the minimal polynomial of αs+1 over L0. Then
p(X)|fs+1(X). Since fs+1(X) has simple roots, p(X) must also have simple
roots. Hence τ(p) must have simple roots. As all the roots of τ(fs+1) =
σ(fs+1) are in M, all the roots of τ(p) are also in M. Hence by the first part,
the number of embeddings τ ′ : L0(αs+1) → M such that τ ′|L0 = τ is equal
to [L0(αs+1) : L0] = deg(p). Hence the number of embeddings τ ′ : L0 → M
such that τ ′|K = σ is equal to [L0(αs+1) : L0][L0 : K] = [L0(αs+1) : K].

⇐= : Now assume that the number of embeddings τ : L → M such that
τ |K = σ is equal to [L : K]. We want to show that L/K is separable.
Consider l ∈ L and let f(X) ∈ K[X] be the minimal polynomial of l over K.
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Let g = σ(f) ∈ M [X]. f has simple roots if and only if g has simple roots.
By Theorem 5.10, the number of embeddings

τ ′ : K(l)→M

such that τ ′|K = σ is less than or equal to [K(l) : K]. Once we fix such a τ ′

and apply Theorem 5.10 again, we get that the number of embeddings

τ : L→M

such that τ |K(l) = τ ′ is less than or equal to [L : K(l)]. Hence the number of

τ : L→M

such that τ |K = σ is less than or equal to [L : K(l)][K(l) : K] = [L : K].
But by hypithesis, this number is equal to [L : K]. Hence the number of τ ′s
as above should be equal to [K(l) : K] = deg(f) = deg(g). As each map τ ′

maps l to a root of g and different τ ′s maps l to distinct roots of g, we have
that g has deg(g) distinct roots in M. Hence all the roots of g are simple
which implies that all the roots of f are simple and hence l is separable over
K.

Corollary 6.10. Let L/K be a field extension and l ∈ L separable over K.
Then K(l)/K is a separable extension.

Corollary 6.11. Let L/K be a field extension. Then

M = {l ∈ L | l is separable over K }

is a field.

Proposition 6.12. Let K ⊆ L ⊆ M be fields. Then L/K and M/L are
separable if and only if M/K is separable.

Proof. =⇒ : Assume that L/K and M/L are separable. Let m ∈ M . We
want to show that m is separable over K. Let p(X) =

∑n
i=0 liX

i ∈ L[X] be
the minimal polynomial of m over L. Let L0 = K(l1, . . . , ln). Then L0/K is
a separable finite extension. Let M0 = L0(m). The minimal polynomial of
m over L0 is p(X). Hence M0/L0 is a separable finite extension. Let E be
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an extension of K which contains all the conjugates of each li and m. Then
by Theorem 6.9, the number of embeddings

τ : L0 → E

such that τ |K = idK is equal to [L0 : K]. Once we fix such an embedding τ ,
the nunber of embeddings

τ ′ : M0 → E

such that τ ′|L0 = τ is equal to [M0 : L0]. Hence the number of embeddings

τ ′ : M0 → E

such that τ ′K = idK is equal to [M0 : L0][L0 : K] = [M0 : K]. Hence by
Theorem 6.9, we have that M0/K is separable.

⇐= : Let M/K be separable. We want to show that L/K and M/L are
separable. Since every l ∈ L is also an element of M , l is separable over K
by assumption, hence L/K is separable. Now since every m ∈ L is separable
over K, it must also be separable over L.



Chapter 7

Algebraic Closure and
Primitive Element Theorem

Definition 7.1. A field K is called algebraically closed if every polynomial
f(X) ∈ K[X] of degree greater than or equal to 1 has a root in K.

Definition 7.2. Let L/K be a field extension. If L is algebraic over K and
is algebraically closed, we say that L is an algebraic closure of K. An
algebraic closure of K is denoted by K.

Proposition 7.3. Let K be a field. Then there exists a field extension E/K
such that E is algebraically closed.

Proof. Let S = {f ∈ K[X] | f is irreducible over K }. Let Xf be an indeter-
minant indexed by f ∈ S. Denote K[S] = K[Xf : f ∈ S] the polynomial
ring with infinitely many variables. Now let I be an ideal of K[S] generated
by each f(Xf ). We claim that I is not the whole ring. Suppose that I is the
whole ring. Then 1 ∈ I. We therefore have that

1 =
n∑
i=1

gifi(Xfi)

Rename, for efficiency, Xfi to Xi and assume that only X1, . . . , Xn appear in
the equation. Now let L be a splitting field of f1(X1), . . . , fn(Xn) and αi ∈ L
a root of fi(Xi). Setting Xi = αi in the equation above, we see that 1 = 0,
an obvious contradiction. Hence I cannot equal the whole ring.
Now consider m a maximal ideal of K[S] containing I. Let E1 = K[S]/m.

34
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Then E1 is an extension of K and it contains all roots of any non-constant
polynomial in K[X]. We can apply the same process to E1 to obtain an
extension E2/E1 wich contains all roots of any non-constant polynomial in
E1[X] and so on. We get a sequence of fields

K ⊆ E1 ⊆ E2 ⊆ . . .

Letting E =
⋃
i≥1Ei, we see that E has the structure of a field. Consider

any non-constant polynomial f(X) ∈ E[X]. Then f(X) ∈ En[X] for some
n. Hence f(X) has a root in En+1 ⊆ E. Thus, E is algebraically closed.

Theorem 7.4. Let K be a field. Then the algebraic closure K of K exists.

Proof. Let E/K be the extension constructed in the previous proposition and
let K = {a ∈ E | a is algebraic over K}. Then K/K is algebraic. Let a ∈ E
be algebraic over K and f(X) = mina,K(X). Let L be a finite extension
of K containing f(X) (for example, take L to be the field generated by the
coefficients of f). Then a is algebraic over L. Hence L(a) is a finite extension
of L and therefore a finite extension of K. Hence a is algebraic over K i.e
a ∈ K. Therefore, K is algebraically closed.

Definition 7.5. Let L/K be a finite extension. Then L/K is called a simple
extension if L = K(α) for some α ∈ L. In this case, we say that α is a
primitive element.

Proposition 7.6. Let L/K be a finite extension. Then L is simple if and
only if there are only finitely many fields Fi such that K ⊆ F1 ⊆ · · · ⊆ Fn ⊆ L
for some n ∈ N.

Proof. If K is a finite field then since L/K is a finite extension, we see that
L is also finite. But then it is obvious that there are only finitely many fields
between K and L.
Now since L is finite, it follows that L× is a finite abelian group. Let m
be the lowest common multiple of all elements in L×. Then lm = 1 for
all l ∈ L×. Hence all elements of L× are roots of the polynomial Xm − 1.
This polynomial can have at most m roots hence m ≥ |L×|. Now consider
the subgroup of L× generated by some element of order m. By Lagrange’s
theorem, we have that m divides |L×|. Hence m = n. This implies that L×

is cyclic. Therefore L is generated by a single element which is exactly what
it means for L to be simple.
We now assume that K is an infinite field.
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=⇒ : Assume that L is simple i.e L = K(α). Let f(X) be the minimal
polynomial of α over K. Now let K ⊆ F ⊆ L and g(X) be the minimal
polynomial of α over F . Then g(X)|f(X). Let F0 be the subfield of F
generated over K by the coefficients of g(X). Then L = K(α) = F (α) =
F0(α) and g(X) is irreducible over F0. Therefore we have that g(X) =
minα,F0(X). Hence [L : F0] = [L : F ] = deg(g(X)) which implies that
F = F0. We therefore have an injective map between the subfields of L
containing K into the set of monic divisors of f(X). Since the latter set is
finite, we have that the former set is also finite.

⇐= : Now suppose that there are only finitely many fields between L and
K. We want to show that given any a, b in L, there exists a α ∈ L such that
K(a, b) = K(α). We shall show this by induction.
Assume that L = K(a, b) and consider all fields of the form K(a + cb) for
all c ∈ K. Since there are infinitely many elements of L and only finitely
many intermediate fields, there must exist distinct elements c, c′ ∈ K such
that K(a + cb) = K(a + c′b). Let α1 = a + cb and α2 = a + c′b. Then
K(α1) = K(α2) so α2 ∈ K(α1). Hence α1 − α2 = (c− c′)b ∈ K(α1). There-
fore b ∈ K(α1) and α1 − cb = α ∈ K(α1). Thus, L = K(a+ cb).
Now assume that the proposition is true for extensions L = K(a1, . . . , an.
Consider L = K(a1, . . . , an+1)Then L = K(a1, . . . , an+1) = K(a1, . . . , an)(an+1).
By the induction hypothesis, we can show that there is an a ∈ K(a1, . . . , an)
such that K(a1, . . . , an) = K(a). Hence we have that L = K(a)(an+1) =
K(a, an+1). By the basis case, we can find a b ∈ K(a, an+1) such that
K(a, an+1) = K(b). hence L = K(b) and L is a simple extension.

Theorem 7.7. (Primitive Element Theorem)
Let L/K be a finite separable extension. Then L is a simple extension of K.

Proof. If K is finite then, from the previous proposition, we have that L/K
is simple and we are done. Hence assume that K is infinite. It suffices to
consider the case when L = K(a, b) and the generalisation will follow from
induction.
Let n = [L : K]. Then since L/K is a separable extension, we have that
there exists n distinct K-embeddings of L into K. Now suppose that there
exists c ∈ L such that L = (a + cb). Then a + cb must have n distinct
conjugates which are exactly the images of a + cb under the action of the
n K-embeddings of L. We denote these embeddings by σ1, . . . , σn. These
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embeddings map a+ cb to the roots of the polynomial p(x) = mina+cb,K(X)
in K. Hence a + cb is a primitive element if and only if there exists n K-
embeddings of L such that σi(a + cb) 6= σj(a + cb) for all i 6= j. This is
equivalent to saying that

n∏
i 6=j

(σi(a)− σj(a)− c(σi(b)− σj(b)) 6= 0

Now this is equivalent to saying that c is not a root of the following polyno-
mial

f(X) =
n∏
i 6=j

(σi(a)− σj(a)−X(σi(b)− σj(b))

Since K is infinite and f(X) has finitely man roots, we can easily find such
a c. Hence a+ cb is a primitive element and thus L = (a+ cb).



Chapter 8

Normal Extensions

Definition 8.1. Let L/K be a field extension. Then L/K is called normal
if it is algebraic and for every l ∈ L, the minimal polynomial of l over K
splits completely over L.

Example 8.2. Q(
√

2)/Q is normal.

Proposition 8.3. Let K be a field and f(X) ∈ K[X]. Then a splitting field
of f is a normal extension of K.

Proof. Let L be a splitting field of f and α1, . . . , αr the roots of f . Hence
L = K(α1, . . . , αr). Let l ∈ L and p(X) be the minimal polynomial of l over
K. Let M be a splitting field of p(X) over L. Let l′ ∈M be a root of p(X).
We must show that l′ ∈ L. There is a unique isomorphism

τ : K(l)→ K(l′)

such that τ(l) = l′ and τ |K = idK . By Artin’s Extension Theorem, we may
extend τ to τ ′ : L→M such that τ ′|K(l) = τ . We can find such an extension
as follows.
Assume that we have an extension τ ′ : K(l, α1, . . . , αn) → M for some 1 ≤
s < r. Let g(X) be the minimal polynomial of αs+1 over K(l, α1, . . . , αs).
Then g(X)|f(X) and hence τ ′(g)|τ ′(f) = f . Since f splits completely in L,
so does τ(g). Let α′s+1 be a root of τ(g) in M . Then there is an extension

τ ′′ : K(l, α1, . . . , αs+1)→M

such that τ ′′|K(l,α1,...,αs+1) = τ ′ and τ ′′(αs+1) = α′s+1.
We therefore have an embedding τ ′ : L → M such that τ ′|K = idK and

38
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τ ′(l) = l′. We now claim that τ ′(L) = L. Noote that τ ′ is determined by
where it sends αi’s. τ ′(αi) must be a root of τ ′(f) = f . Hence τ ′(αi) ∈
{α1, . . . , αr} for each i. Hence τ ′(L) ⊆ L and by Proposition 5.6 τ ′(L) = L.
Hence l′ ∈ L and p(X) splits completely in L.

Theorem 8.4. Let L/K be an algebraic extension. Then L/K is normal if
and only if for any extension M of L and for any K-embedding, τ : L→M
maps L to itself.

Proof.

=⇒ : Assume that L/K is normal and let τ : L → M be an embedding.
Let l ∈ L and f(X) ∈ K[X] be the minimal polynomial of l over K. Then
L contains all the roots of f(X). Also note that τ(l) is a root of τ(f) = f .
Hence τ(l) ∈ L. Now by Proposition 5.6, τ(L) = L.

⇐= : Assume that for any extension M of L and any K-embedding,
τ : L → M maps L to itself. We take M to be an algebraic closure of
K. Let l in L and f(X) ∈ K[X] be the minimal polynomial of l over K.
We must show that f(X) splits completely in L. Let l′ ∈ K be a root of
f(X). Then by Artin’s Extension Theorem, there is a unique ismorphism
τ : K(l) → K(l′) such that τ |K = idK and τ(l) = l′. We claim that we can
extend τ to an embedding τ ′ : L→ M . Let E be the maximal subfield of L
containing K(l) such that τ can be extended to an embedding τ ′ : E → K.
If E 6= L, take α ∈ L−E and let p(X) be the minimal polynomial of α over
K. Then p(X) splits completely in K. Let g(X) be the minimal polynomial
of α over E. Then τ ′(g) splits completely in K. Let α′ ∈ K be a root in
τ ′(g). Then by Artin’s Extension Theorem, we get

τ ′′ : E(α)→ τ ′(E)(α′) ⊆ K

such that τ ′′|E = τ ′ i.e we get an extension of τ to E(α). By maximality of E,
α ∈ E which is a contradiction. Hence E = L. As τ(L) = L by hypothesis,
we get τ(l) = l′ ∈ L.

Proposition 8.5. Let K ⊆ L ⊆ M be fields. If M/K is normal then so is
M/L. Let f(X) ∈ L[X] be an irreducible polynomial with a root l ∈ M . Let
g(X) ∈ K[X] be the minimal polynomial of l over K. Then f(X)|g(X). As
M/K is normal, g splits completely in M [X]. Hence f(X) splits completely
in M [X]/



Chapter 9

Galois Extensions

Definition 9.1. A field extension L/K is called Galois if it is normal and
separable. The group AutK(L) of K-automorphisms of L is called the Galois
group of L/K and is denoted by Gal(L/K).

Proposition 9.2. Let K ⊆ L ⊆ M be fields. If M/K is a Galois extension
then so is M/L.

Definition 9.3. Let L/K be an extension and let H a subgroup of Gal(L/K).
Then the fixed field of H in L is defined to be

LH := {l ∈ L |h(l) = l ∀h ∈ H}

Remark. Clearly, LH is an intermediate extension of L/K and L/LH is a
galois extension.

40



Chapter 10

Fundamental Theorem of
Galois Theory

Lemma 10.1. (Zorn’s Lemma)
Let S be a non-empty partially ordered set. Assume that every chain in S has
an upper bound i.e if s1 ≤ s2 ≤ . . . is a chain in S then there exists s ∈ S
such that si ≤ s for all i. Then S has a maximal element, say s, such that
there is no s′ ∈ S with s < s′.

Proposition 10.2. Let L/K be a normal extension. Let K ⊆M ⊆ L be an
intermediate extension. Then any K-embedding τ : M → L can be extended
to a K-automorphism of L.

Proof. Assume that E is the maximal extension of M contained in L such
that τ extends to an embedding of τ ′ : E → L. The existence of such an
extension is guaranteed by Zorn’s Lemma as follows.
Let S be the set of all pairs (E, τ ′) such that M ⊆ E ⊆ L is an intermediate
extension and τ ′ : E → L is an embedding such that τ ′|M = τ . Then S is
non-empty because (M, τ) ∈ S. The partial ordering on S is given as follows

(E1, τ
′
1) ≤ (E2, τ

′
2)

if

E1 ⊆ E2, τ
′
2|E1 = τ ′1

Let {(Ei, τ ′i)} be a chain in S. Let E =
⋃
iEi. There is an embedding

τ ′ : E → L, defined as τ ′(e) = τ ′i(e) if e ∈ Ei. With this definition, (E, τ ′) is

41
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an upper bound of the chain. Hence S has a maximal element.
We now claim that E = L. Let α ∈ L and consider E(α). Let p(X) ∈ K[X]
be the minimal polynomial of α in K and let f(X) ∈ E[X] be the minimal
polynomial of α over E. Since L/K is normal, L/E is also normal and hence
both p(X) and f(X) split completely over L. We note that τ ′(f)|p(X) and
hence τ ′(f) splits completely in L. Let α′ ∈ L be any root of τ ′(f). By
Artin’s Extension Theorem, τ ′ extends to an isomorphism

τ ′′ : E(α)→ τ ′(E)(α′) ⊆ L

As τ ′′|M = τ ′|M = τ , by maximality of E, E = E(α). Hence α ∈ L. Since α
was an arbitrary element of L, L ⊆ E. Hence L = E and we are done.

Proposition 10.3. Let L be a field and G the group of automorphisms of L.
Consider the fixed field K = LG. Then L/K is Galois with Gal(L/K) = G
and thus [L : K] = |G|

Proof. Let α ∈ L. We find a seperable polynomial in K[X] with α as one
of its roots. Let {σ1, . . . , σr} be a maximal set of elements of G such that
σ1(α), . . . , σr(α) are all distinct. Then for any τ ∈ G

(τσ1(α), . . . , τσr(α))

is a permutation of

(σ1(α), . . . , σr(α))

Indeed, if it is not a permutation then the maximality of {σ1, . . . , σr} is
contradicted.
Now consider the polynomial

f(X) =
r∏
i=1

(X − σi(α))

It is obviously seperable as each σi(α) is distinct and has α as a root since G
is a group and hence one of the σi must be the identity mapping. We can also
see that given any τ ∈ G, τ(f) = f . Therefore f(X) ∈ K[X]. Hence every
α ∈ L is a root of a seperable polynomial of degree less than or equal to |G|
over K meaning that L is seperable. Moreover, these polynomials obviously
split completely over L and hence L is a normal extension. Therefore, L/K
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is a Galois extension.
We now show that [L : K] = |G|. Let n = |G| and G = {σ1, . . . , σr}. Assume
that {l1, . . . , ln+1} ⊆ L is linearly independent over K. Now consider the
system of equations

σ1(l1)X1 + · · ·+ σ1(ln+1)Xn+1 = 0 (10.1)

...

σn(l1)X1 + · · ·+ σn(ln+1)Xn+1 = 0

Assume that ~α = (α1, . . . , αr, 0, . . . , 0) is a solution of these equations with
minimal r and fix σ ∈ G. (σσ1, . . . , σσn) is just a permutation of (σ1, . . . , σn).
Therefore the system of equations

σσ1(l1)σ(α1) + · · ·+ σσ1(lr)σ(σr) = 0

...

σσn(l1)σ(α1) + · · ·+ σσn(lr)σ(αr) = 0

can be written, up to permutation of the equations, as

σ1(l1)σ(α1) + · · ·+ σ1(lr)σ(σr) = 0 (10.2)

...

σn(l1)σ(α1) + · · ·+ σn(lr)σ(αr) = 0

Let (10.1)(~α) denote the equations in (10.1) evaluated at ~α then taking
αr(10.2)− σ(αr)(1)(~α)

σ1(l1)(αrσ(α1)− α1σ(αr)) + · · ·+ σ1(lr−1)(αrσ(αr−1)− αr−1σ(αr)) = 0

...

σn(l1)(αrσ(α1)− α1σ(αr)) + · · ·+ σn(lr−1)(αrσ(αr−1)− αr−1σ(αr)) = 0

This is a solution of (10.1) with fewer non-zero terms. Therefore, all the
terms must be zero. We thus have that αrσ(αi) = αiσ(αr) for all i ≤ r − 1.
This is equivalent to having σ(αiα

−1
r ) = αiα

−1
r for all i ≤ r − 1.

Now since σ is an arbitrary K-automorphism in G, we must have that mi :=
αiα

−1
r ∈ K for all i ≤ r − 1. Hence αi = miαr for all i ≤ r. Then equation
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(10.1), evaluated at ~α gives

0 = σ1(l1)α1 + · · ·+ σ1(lr)αr

= (σ(l1)m1 + · · ·+ σ1(lr)mr)αr

= σ1(l1m1 + · · ·+ lrmr)αr

Since αr is not 0 by construction, we must have that σ1(l1m1+· · ·+lrmr) = 0.
Now since σ is an isomorphism, its kernel is trivial hence l1m1+· · ·+lrmr = 0.
But this is a contradiction to the assumption that {l1, . . . , lr} are linearly
independent over K. Hence [L : K] ≤ n.
Now Theorem 5.10 implies that [L : K] ≥ n. Thus we must have that
[L : K] = n.

Theorem 10.4. (Fundamental Theorem of Galois Theory for Finite Exten-
sions)
Let L/K be a finite Galois extension, H a subgroup of Gal(L/K) and E and
intermediate field of L/K. Then

1. the maps

H 7→ LH

E 7→ Gal(L/E)

are mutually inverse, inclusion reversing bijections between the sub-
groups of Gal(L/K) and the intermediate fields of L/K.

2. LH/K is Galois if and only if H is a normal subgroup of Gal(L/K).
In this case, the restriction map

Gal(L/K)→ Gal(LH/K)

σ 7→ σ|LH

induces an isomorphism of groups Gal(L/K)/H → Gal(LH/K).

Proof. Part 1: We first show that the mappings are inclusion reversing. Let
K ⊆ F1 ⊆ F2 ⊆ L and Gi = Gal(L/Fi). If σ ∈ G2 then σ fixes F2. Since
F1 ⊆ F2, we have that σ fixes F1 and hence σ ∈ G1.
Now let H1 ⊆ H2 ⊆ Gal(L/K) and Fi = LHi . If x ∈ F2 then σ(x) = x for all
σ ∈ H2. Since H1 ⊆, we have that σ(x) = x for all x ∈ H1. Hence x ∈ F1.
Therefore the maps are inclusion reversing.
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We now show that the map E 7→ Gal(L/E) is injective. Let G = Gal(L/K).
We shall first prove that LG = K. It is clear that K ⊆ LG. Let α ∈ LG

and consider the extension K(α)/K. Let f(X) ∈ K[X] be the minimal
polynomial of α over K. Since L is normal, f(X) splits completely in L[X]
and since it is also seperable, all the roots of f are simple roots. If deg(f) > 1
then let α′ 6= α be another root of f(X). Then there is a K-isomorphism

τ : K(α)→ K(α′)

Since L is a normal extension of K containing both K(α) and K(α′), this
isomorphism τ can be etended to a K-automorphism, say τ ′, of L. Hence
τ ′ is an element of G. Since α ∈ LG, α = τ ′(α) = τ(α). But τ(α) =
α′ by construction. By asssumption, α 6= α′ hence this is a contradiction
and deg(f) = 1 and a ∈ K. Hence LG = K. Now let E and E ′ be two
intermediate fields of L/K such that H := Gal(L/E) = Gal(L/E ′) =: H ′.
By the result we have just shown, we have that E = LH = LH

′
= E ′.

Therefore E 7→ Gal(L/E) is an injective mapping.
We now show that E 7→ Gal(L/E) is a surjective mapping. We have to prove
that for every subgroup of the Galois group of L/K, there exists a fixed field
of L/K that maps to it. Let H ⊆ G be a subgroup of the Galois group of
L/K. Then by Proposition 10.4, L/LH is a Galois extension with Galois
group H. Hence the mapping E 7→ Gal(L/E) is surjective.

Part 2:

=⇒ : Now assume that LH/K is a Galois extension. Then the restriction
map

φ : Gal(L/K)→ Gal(LH/K)

σ 7→ σ|LH

induces a group homomorphism.
Since L is a normal extension, any automorphism of LH can be extended to
an automorphism of L. This implies that the map is surjective. Now

ker(φ) = {σ ∈ Gal(L/K) |σ|LH = id}

Hence the kernel is comprised of all those automorphisms that, when re-
stricted to LH are just the identity automorphism. Bu this is exactly H.
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Since H is the kernel of a group homomorphism on Gal(L/K), H must be a
normal subgroup.

⇐= : Now assume that LH is not Galois over K. Then there exists an
automorphism of L, say σ, such that σ(LH) 6= LH . Indeed, if there did
not exist such an automorphism, then Theorem 8.4 would imply that LH is
normal over K and hence Galois.
We claim that σHσ−1 6= H. To show this, we need to prove that LσHσ

−1
=

σ(LH).
Let Z = σ(LH) and x ∈ Z. Then x = σ(y) for some y ∈ LH . Now

(σφσ−1)(x) = σφ(y)

= σ(y)

= x

for all φ ∈ H. Hence x is also fixed by σφσ−1 and therefore x ∈ LσHσ
−1

.
Thus we have that σ(LH) ⊆ LσHσ

−1
.

Now let x ∈ LH . We have that x = σ−1(y) for some y ∈ Z. Therefore

(σ−1φ′σ)(x) = σ−1φ′(y)

= σ−1(y)

= x

for all φ′ in H ′, the Galois group of Z. Therefore H ⊆ σH ′σ−1 and thus
σHσ−1 ⊆ H ′. It hence follows that LσHσ

−1 ⊆ LH
′
= σ(LH). We can now see

that σ(LH) = LσHσ
−1

.
Now assume that H is normal so that σHσ−1 = H. By what we have just
proved, this implies that σ(LH) = LH . But this is a contradiction and we
hence see that H is not a normal subgroup.

Definition 10.5. Let f(X) ∈ K[X]. We define the Galois group of f(X)
over K to be

Gal(f/K) = Gal(Kf/K)

where Kf is a splitting field of f(X) over K.

Definition 10.6. Let r > 0. We denote the group of permutations on r ele-
ments by Sr. We say that a subgroup of Sr is transitive if it acts transitively
on the set of r elements.
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Example 10.7. {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4), (2, 3)} is a transitive sub-
group of S4.

Proposition 10.8. Let f(X) ∈ K[X] be a polynomial with r distinct roots.
Then Gal(f/K) is isomorphic to a subgroup of of Sr and hence the order of
Gal(f/K) divides r!. Moreover, if f is irreducible over K then Gal(f/K) is
a transitive subgroup of Sr.

Proof. Let L be a splitting field of f over K and l1, . . . , lr be roots of f . Then
L = K(l1, . . . , lr). A K-automorphism of L is determined by the images of
the li’s. Such an automorphism must map a root of f to a root. Hence a
K-automorphism of L permutes elements of the set l1, . . . , lr. Hence we get
an injection of Gal(f/K) into Sr.
Now assume that f is irreducible over K. Then for any 1 ≤ i ≤ r, there is a
K-isomorphism

K(l1)→ K(li)

By Proposition 10.2, this can be extended to an automorphism of L and hence
to an element of Gal(f/K). Therefore, Gal(f/K) is a transitive subgroup
of Sr.



Chapter 11

Cubic Polynomials

Let f(X) ∈ K[X] be a cubic polynomial. Then Gal(f/K) is a subgroup of
S3. S3 has 6 subgroups, namely

• {(1)}

• {(1), (1, 2)}

• {(1), (1, 3)}

• {(1), (2, 3)}

• {(1), (1, 2, 3), (1, 3, 2)}

• {(1), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}

If f(X) splits completely overK thenGal(f/K) = {(1)}. If f(X) is reducible
over K but does not split completely then Gal(f/K) is isomorphic to the
cyclic group of order 2.
If Gal(f/K) ∼= S3 then by the fundamental theorem of Galois Theory, there
exists a field extension M such that K ⊆M ⊆ L and Gal(M/K) ∼= C3. We
have that M = K(δ) where δ ∈ L. Even permutations of S3 fix δ and odd
permutations send δ to −δ. If α1, α2, α3 are the roots of f then

δ = (α1 − α2)(α2 − α3)(α3 − α1)

If f is irreducible over K then Gal(f/K) is S3 if and only if δ /∈ K.
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Definition 11.1. Let f(X) ∈ K[X] be a cubic polynomial and α1, α2, α3 its
roots in a splitting field over K. Then we define the descriminant D of f as

D = δ2 = (α1 − α2)
2(α2 − α3)(α3 − α1)

2

Suppose that
√
D ∈ K. Then any element of Gal(f/K) must fix

√
D.

But a transposition of two roots does not fix
√
D. S3 contains exactly 3 such

permutations (namely the cyclic groups of order 2). Therefore Gal(f/K) ∼=
S3 if and only if D is not a square in K. If f(X) = X3 + aX + b then

D = −4a3 − 27b2

If f(X) = X3 + a2X
2 + a1X + a0 and char(K) 6= 3 then we can eliminate

the quadratic term with the change of variable Y = X − a2
3

.

Example 11.2. Consider the polynomial f(X) = X3 +2 ∈ Q[X]. By Eisen-
stein’s Criterion, we have that the prime number 2 divies every coefficient
except the leading one and 22 = 4 6 |a0 = 2 hence f(X) is irreducible over Q.
It’s Galois group Gal(f/Q) is hence either S3 or C3. The descriminant of
f(X) is D = −27 · 22. This is not a square in Q and hence the Galois group
is S3.
We shall now describe all intermediate extensions of Q and the splitting field
of f .
Let L be a splitting field of f over Q. Since Gal(L/Q) = S3, we have that
there are 3 intermediate extensions of degree 3 and one of degree 2.
The intermediate field of degree 2 is fixed by C3 ⊆ S3. Since C3 is a normal
subgroup of S3, we have that the intermediate field LC3 is Galois over Q.
The other extensions are not normal subgroups of S3 and hence none of their
corresponding fixed fields are Galois over Q. We obtain the following lattice
diagrams

{1}

〈(12)〉 〈(13)〉 〈(23)〉

〈(123)〉

S3
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L

Q(α3) = L〈(12)〉 Q(α2) = L〈(13)〉 Q(α1) = L〈(23)〉

Q(
√
D) = L〈(123)〉

S3

We can write α2 and α3 in terms of
√
D and α1. Note that

f(X) = (X − α1)g(X)

where

g(X) = X2 + α1X + α2
1 + a

We thus see that α2, α3 =
−α1±
√
disc(g)

2
. It is easily shown that disc(g) =

(α2 − α3)
2. Another calculation shows that D = disc(f) = g(α1)

2disc(g).

Example 11.3. Consider the polynomial f(X) = X3+X+1 over the rational
numbers. The image of f(X) under the map

σ : Q[X]→ F2[X]

f(X) 7→ f(X) (mod 2)

has no roots in F2 and is hence irreducible over this field. We therefore have
that f(X) is irreducible over the Z and, by Gauss’ Lemma, irreducible over
Q.
The discriminant of f(X) is given by

D = −4− 27 = −31

This is not a square in the rational numbers. Hence Gal(f/Q) = S3.

Example 11.4. Consider the polynomial f(X) = X3 − X2 − 2X + 1 over
the rational numbers. By argumentation similar to the previous example, we
can see that f(X) is irreducible over F2 and thus over Z. By Gauss’ Lemma,
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f(X) is irreducible over Q.
By making the linear change of variable X = X + 1

3
to get the polynomial

g(X) = X3 − 7
3
X + 7

27
, we can see that the discriminant is

D = −4 ·
(
−7

3

)3

− 27 ·
(

7

27

)2

= 4 · 73

27
− 72

27

= 72

(
28/27

−
1

27

)
= 72

Hence D is a square in Q and Gal(f/Q) ∼= A3.



Chapter 12

Symmetric Polynomials

Definition 12.1. Let X1, . . . Xn be variables. We define the elementary
symmetric functions in Xi to be

s1 = X1 +X2 · · ·+Xn

s2 = X1X2 +X1X3 + · · ·+Xn−1Xn =
∑
i<j

XiXj

s3 =
∑
i<j<k

XiXjXk

...

sn = X1X2 . . . Xn

Obviously Sn acts on X1, . . . , Xn. This action can be extended to an
action on the polynomial ring R[X1, . . . , Xn] for any ring R. Let f ∈
R[X1, . . . , Xn] and σ ∈ Sn. Then

σ(f)(X1, . . . , Xn) = f(Xσ(1), . . . , Xσ(n))

Example 12.2. Let f(X1, X2, X3) = X1X2 + X2
2X

2
3 and σ = (123) ∈ S3.

Then σ(f)(X1, X2, X3) = X2X3 +X2
3X

2
1 .

Definition 12.3. We say that a polynomial f(X1, . . . , Xn) ∈ R[X1, . . . , Xn]
is a symmetric polynomial if σ(f) = f for all σ ∈ Sn.

Definition 12.4. We say that a polynomial f(X1, . . . , Xn) ∈ R[X1, . . . , Xn]
is a partially symmetric polynomial with respect to H if σ(f) = f for
all σ ∈ H for some H ⊆ Sn.
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Example 12.5.

f(X1, . . . , Xn) =
∏

1≤i≤j≤n

(Xi −Xj)

is partially symmetric with respect to the subgroup An ⊆ Sn.

Example 12.6.

f(X1, X2, X3, X4) = X1X3 +X2X4

is partially symmetric with respect to the subgroup D4 ⊆ S4.

Theorem 12.7. Any symmetric polynomial in X1, . . . , Xn can be uniquely
expressed in terms of elementary symmetric polynomials.

Example 12.8. X2
1 +X2

2 +X2
3 = s21 − 2s2

Corollary 12.9. The ring R[s1, . . . , sn] is isomorphic to the polynomial ring
in n variables over R.

Definition 12.10. A rational function f ∈ K(X1, . . . , Xn) is symmetric
if σ(f) = f for all σ ∈ Sn.

Corollary 12.11. A symmetric rational function can be uniquely expressed
as a rational function in s1, . . . , sn.

Corollary 12.12. Let K be a field, M = K(X1, . . . , Xn) and L = K(s1, . . . , sn).
Then M/L is Galois with Gal(M/L) ∼= Sn.

Definition 12.13. Let f ∈ K[X] be a polynomial of degree n with roots
α1, . . . , αn. Then we define the descriminant of f by

D =
∏
i<j

(αi − αj)2

Remark. The polynomial
∏

i<j(Xi −Xj)
2 is symmetric meaning D is fixed

by all σ ∈ Sn. It is clear that D is non-zero if and only if f is a seperable
polynomial. We can also see that D ∈ K.



Chapter 13

Quartic equation

Let f(X) ∈ K[X] be a quartic polynomial. Then Gal(f/K) is a subgroup
of S4. S4 has 24 subgroups, namely

• Isomorphic to C1: {(1)}

• Isomorphic to C2: six subgroups generated by the six transpositions
and three subgroups generated by the products of two distinct trans-
positions

• Isomorphic to C3: four subgroups generated by three cycles

• Isomorphic to V4 := C2 × C2: one transitive subgroup

V = {(1), (12)(34), (13)(24), (14)(23)}

and three non-transitive subgroups from products of C2’s above.

• Isomorphic to C4: three transitive subgroups generated by (1234), (1324), (1243)

• Isomorphic to S3: four non-transitive subgroups obtained as stabilisers
of each element of the finite set.

• Isomorphic to D4: three transitive subgroups generated by the three
C4’s above and one by the non-transitive V4’s above.

• The alternating subgroup A4

• S4
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We shall only consider the cases where f is an irreducible quartic polynomial
over K so that the Galois group is one of V,C4, D4, A4, S4.

Proposition 13.1. Let f(X) = X4 + bX2 + c ∈ K[X] be an irreducible
seperable polynomial. Then Gal(f/K) = V if and only if c is a square in K.

Proof. The roots of f(X) are given by ±
√
r ± s

√
t where b = −2r and c =

r2 − s2t. Letting α =
√
r + s

√
t and α′ =

√
r − s

√
t then the roots of f are

α,−α, α′,−α′. The splitting field for f over K is therefore L = K(
√
t, α, α′).

Therefore |Gal(f/K)| divides 8. We hence have that Gal(f/K) is either
C4, D4 or V .
The discriminant of f is given by

D = δ2 = 24(b2 − 4c)2c = 28s4t2(r2 − s2t)

If c is a square in K then so is D. Hence Gal(f/K) ⊆ A4. Since the order of
the Galois group must divide 8, the only choice is that Gal(f/K) = V .

Remark. We also see from the above proof that
√
r + s

√
t can be written as√

a+
√
b if and only if r2 − s2t is a square in K.

Remark. To check if a polynomial of the form f(X) = X4 + aX2 + b is
irreducible over K, we first consider the quadratic polyomial g(Y ) = Y 2 +
aY + b. If the roots of f are ±α and ±α′ then the roots of g are α2 and α′2.
If g(X) is reducible then α2 and α′2 lie in K and hence f(X) factorises into
(X2 − α2)(X2 − α′2).
Conversely, if g(X) is irreducible then we just have to check if f(X) factorises
over K[X] into two quadratic polynomials. Writing

f(X) = (X2 + aX + b)(X2 + cX + d)

we can check if there exist solutions of a, b, c, d ∈ K with a and c non-zero.
If such no such solution exists thatn f(X) is irreducible over K.

Example 13.2. Consider the polynomial f(X) = X4−10X2 +1 over Q. By
the remark above, we can show that f is irreducible over Q. The quadratic
polynomial Y 2 − 10Y + 1 has no roots in Q. Hence if f(X) is reducible, it
should factorise as

f(X) = X4 − 10X2 + 1 = (X2 + aX + b)(X2 + cX + d)

= X4 + (a+ c)X3 + (b+ d+ ac)X2 + (bc+ ad)X + bd



CHAPTER 13. QUARTIC EQUATION 56

Hence, a = −c, b + d − a2 = −10, a(d − b) = 0 and bd = 1. We see that
b = d = ±1. Therefore a2 = ±2 + 10 which has no rational solutions. Hence
f(X) is irreducible over Q.
By the proposition, since c = 1 is a square in Q, we have that Gal(f/Q) ∼= V .
By the fundamental theorem, there are three intermediate extensions of de-

gree 2 over Q. The roots of the polynomial are ±
√

5± 2
√

6. Let α1 = −α2 =√
5 + 2

√
6 and α3 = −α4 =

√
5− 2

√
6.

The orbit of α1 under the group generated by σ1 := (12)(34) is {α1, α2}.
Therefore the field fixed by σ1 contains α1 +α2 = 0 and α1α2 = −(5 + 2

√
6).

The fixed field is thus L〈σ1〉 = Q(
√

6). Furthermore, the group generated by
σ1 is a normal subgroup of V . Therefore Q(

√
6) is Galois over Q.

The orbit of α1 under the group generated by σ2 := (13)(24) is {α1, α3}.
Therefore the field fixed by σ2 contains α1 + α3 and α1α3 = 1. (α1 + α3)

2 =
5 + 2

√
6 + 5 − 2

√
6 + 2α1α3 = 12. Hence α1 + α3 =

√
12 = 2

√
3. The fixed

field is thus L〈σ2〉 = Q(
√

3). Furthermore, the group generated by σ2 is a
normal subgroup of V . Therefore Q(

√
3) is Galois over Q.

The orbit of α1 under the group generated by σ3 := (14)(23) is {α1, α4}.
Therefore the field fixed by σ3 contains σ1 + σ4 and σ1σ4 = −1. (σ1 + σ4)

2 =
5 + 2

√
6 + 5− 2

√
6 + 2α1α4 = 8. Hence α1 +α4 =

√
8 = 2

√
2. The fixed field

is thus L〈σ3〉 = Q(
√

2). Furthermore, the group generated by σ3 is a normal
subgroup of V . Therefore Q(

√
3) is Galois over Q.

The lattice diagrams of the subgroups of Gal(f/Q) and the intermediate fields
of L and Q are

{1}

〈σ1〉 〈σ2〉 〈σ3〉

V

L

Q(
√

6) Q(
√

3) Q(
√

2)

Q

From the above computations, we can obtain an explicit expression of the form√
a +
√
b for the roots of f . α1 + α3 = 2

√
3 and α1 + α4 = α1 − α3 = 2

√
2.

Hence α1 =
√

2 +
√

3 and α3 =
√

3−
√

2.
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Example 13.3. Consider the polynomial f(X) = X4 − 4X2 + 2. By Eisen-
stein’s criterion with the prime number 2, we have that f(X) is irreducible

over the rational numbers. The roots of this polynomial are ±
√

2±
√

2. De-

note α1 = −α2 =
√

2 +
√

2 and α3 = −α4 =
√

2−
√

2. Since c = 2 is not a
square in Q, Gal(f/Q) is either C4 or D4.
Consider the extension L = Q(α1). Trivially, α1, α2 = L. We can see that
α1α2 =

√
2 ∈ L and α1 + α3 =

√
2α. Hence all roots of f(X) are in L. L

must therefore be a splitting field and hence is a normal extension of Q. Thus
|Gal(f/K)| = [L : K] = 4. We must therefore have that Gal(f/K) = C4

as D4 has order 8. C4 has two proper subgroups, namely the trivial subgroup
and the cyclic group of order 2.

The orbit of α1 under the permutation σ := (12) ⊆ C2 is {α1, α2}. There-
fore the field fixed by σ contains α1 + α2 and α1α2 = −

√
2. (α1 + α2)

2 =
2 +
√

2 − 2(2 +
√

2) + 2 +
√

2 = 0. Hence we see that L〈σ〉 = Q(
√

2). Fur-
thermore, C2 / C4 hence L〈σ〉 is Galois over Q.
The lattice diagrams are

{1}

C2

C4

L

Q(
√

2)

Q

Example 13.4. Consider the polynomial f(X) = X4 − 6X2 + 7 over the
rational numbers. The quadratic polynomual Y 2 − 6Y + 7 has no rational
roots. Hence if f(X) is reducible then it should factorise as

X4 − 6X2 + 7 = (X2 + aX + b)(X2 + cX + d)

= X4 + (a+ c)X3 + (b+ d+ ac)X2 + (bc+ ad)X + bd

We have that b = d and thus b2 = 7. This has no rational solutions hence
f(X) is irreducible over Q.
Now, c = 7 is not a square in Q. Therefore Gal(f/Q) is either C4 or

D4. The roots of f(X) are ±
√

3±
√

2. Denote α1 = −α2 =
√

3 +
√

2

and α3 = −α4 =
√

3−
√

2. α1α2 =
√

7 and α2
1 − 3 =

√
2. Hence any
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splitting field L of f(X) must have two quadratic intermediate fields Q(
√

2)
and Q(

√
7). This is only possible if Gal(f/K) = D4. By the definition of D4,

we have that Gal(f/Q) = 〈x = (1324), y = (13)(24)〉. The following table
shows whether or not each subgroup of D4 fixes the roots and combinations
of roots that are present in L. An element is designated fixed by �.

〈x〉 〈x2〉 〈y〉 〈xy〉 〈x2y〉 〈x3y〉 {e} D4

α1 × × × × × � � ×
α3 × × × � × × � ×√

2 × � × � × � � ×√
7 × � × × � × � ×√
2,
√

7 × � × × × × � ×
α1 + α3 × × � × × × � ×
α1 − α3 × × × × � × � ×√

14 � × × × × × � ×

We therefore obtain the following lattices

{1}

〈xy〉 〈x3y〉 〈x2〉 〈y〉 〈x2y〉

〈x2, xy〉 〈x〉 〈x2, y〉

D4

L

Q(α3) Q(α1) Q(
√

2,
√

7) Q(α1 + α3) Q(α1 − α3)

Q(
√

2) Q(
√

14) Q(
√

7)

Q
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Example 13.5. Consider the polynomial f(X) = X4 − 6x2 + 6 over the
rational numbers. By Eisenstein’s criterion with the prime number 3, f(X) is
irreducible over Q. Since c = 6 is not a square in Q, we have that Gal(f/Q)

is either C4 or D4. The roots of the polynomial are ±
√

3±
√

3. Denote

α1 = −α2 =
√

3 +
√

3 and α3 = −α4 =
√

3−
√

3. Now α1α3 =
√

6
and α2

1 − 3 =
√

3. Hence any splitting field L of f contains two quadratic
intermediate extensions, namely Q(

√
6) and Q(

√
3) hence Gal(f/K) ∼= D4.

Definition 13.6. Let f(X) be a quartic polynomial with roots α1, α2, α3, α4

and consider the partially symmetric functions

β1 = α1α3 + α2α4

β2 = α1α2 + α3α4

β3 = α1α4 + α2α3

then the polynomial

g(X) = (X − β1)(X − β2)(X − β3)

lies in K[X] and is called the cubic resolvent of f(X).

If the cubic resolvent of a quartic polynomial is reducible in K[X] then
Gal(f/K) is a subgroup of D4. Hence we can apply the above analysis with
the discriminant D to determine whether the Galois group is V,C4 or D4. If
g(X) is irreducible in K[X] then the Galois group is either A4 or S4. We can
then determine which one it is by checking if the discriminant is a square in
K. If it is then the Gal(f/K) = A4. If not then Gal(f/K) = S4.
For a quartic polynomial of the form f(X) = X4 + aX + b, the discriminant
is D = −27a4 + 256b3 and the cubic resolvent is g(X) = X3 − 4bX − a2.

Example 13.7. Let f(X) = X4 +X + 1 be a polynomial over the rationals.
f(X) is irreducible modulo 2 hence f is irreducible over Z. By Gauss’ Lemma,
it is hence irreducible over Q. The discriminant of f is D = −27+256 = 229
which is not a square in the rational numbers. The cubic resolvent of f is
g(X) = X3−4X−1. g(X) is irreducible modulo 2 and is therefore irreducible
over Z by Gauss’ Lemma. Hence Gal(f/Q) = S4.

Example 13.8. Consider the polynomial f(X) = X4 + 8X + 12 over the
rational numbers. This function is always positive at integers and thus has
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no roots in Z. Therefore it has no roots in Q. This rules out factorisations
into 4 linear factors or one linear factor and one cubic factor. However, the
polynomial could still have a factorisation of two quadratics.
If f(X) factorises into two irreducible quadratic factors over Z then it should
do so modulo p for any prime p. But

f(X) = (X − 4)(X3 + 4X4 +X + 2) (mod 5)

and X3 + 4X2 + X + 2 is irreducible modulo 5. Hence f(X) cannot factor
into two irreducible quadratic polynomials over Z. Therefore f is irreducible
over Z and by Gauss’ lemma, over Q.
The discriminant of f is −33 · 212 + 28 · 26 · 33 = 33 · 212(4 − 1) = 212 · 34.
This is a square in Q hence the Galois group is either V or A4. The cubic
resolvent of f is g(X) = X3− 48X − 64. This is irreducible mod 5 and hence
over Q. Therefore Gal(f/K) = A4.



Chapter 14

Finite Fields

Lemma 14.1. Let F be a finite field of characteristic p. Then |F | = ps for
some s ∈ N.

Proof. The characteristic homomorphism from Z to F has kernel (p) for
some prime p. Therefore Fp = Z/pZ is contained in F . We can then consider
F as a finite dimensional vector space over Fp. Therefore F has a basis
b1, . . . , bs of s elements, say. Then any f ∈ F can be represented in the form
f = a1b1+· · ·+asbs for some ai ∈ Fp. Since each ai can take p different values,
we have that there must be ps different elements in F for some s ≥ 1.

Lemma 14.2. If a field of order ps exists for some s ∈ N then it is unique
up to isomorphism.

Proof. Let F be a finite field of order ps. Then F× is a finite abelian group of
order ps − 1. Therefore αp

s−1 = 1 for all α ∈ F≈im∼. Hence αp
s

= α for all
α ∈ F . Now let f(X) = Xps −X. Then f(α) = 0 for all α ∈ F . Since F has
characteristic p, we see that f ′(X) = −1 so f(X) is seperable. Hence f has
ps different roots. We can thus see that F is a splitting field of f(X) over Fp.
Since any two splitting fields for a polynomial over the same base field are
isomorphic, we have that any two fields of order ps must be isomorphic.

Proposition 14.3. Let p be a prime and s ∈ N. Then the field of order ps

exists.

Proof. Consider the polynomial f(X) = Xps − X ∈ Fp[X]. Let F be the
splitting field of f(X) over Fp[X]. Then F is a finite field and |F | ≥ ps.
Now let S be the set of roots of f(X) in F . We claim that S = F . It suffices
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to show that S is a field. Since f(0) = f(1) = 0, S contains 0 and 1. Now
let α, β ∈ S. It is easy to see that α + β, αβ, α, α−1 are all in S. Hence S is
a field.

Remark. We denote the field of order ps by Fps. Note, however, that Fps
is never Z/psZ. Since Fps is a seperable splitting field over Fp, it follows
that Fps is Galois over Fp. Moreover, since [Fps : Fp] = s, we get that
|Gal(Fps/Fp)| = s.

Definition 14.4. Let Frob be the automorphism of Fps given by

Frob(x) = xp

Frob is an Fp-automorphism of Fps. It is called the Frobenius automor-
phism.

Proposition 14.5. F×ps is a cyclic group of order ps − 1.

Proof. Let n = ps − 1. For all 0 < d|n, denote

Ωd := {α ∈ F×ps | order of α is d}

We claim that |Ωd| ≤ ϕ(d). If Ωd is empty then |Ωd| = 0 and we are done.
Hence assume that |Ωd| is non-empty and α ∈ Ωd. The polynomial Xd − 1
has at most d roots in Fps and hence 1, α, α2, . . . , αd−1 are all the roots of
Xd − 1 in Fps . Furthermore, αi ∈ Ωd if and only if gcd(i, d) = 1. Hence Ωd

has ϕ(d) elements.
Now we observe that any element of F×ps has order d for some 0 < d|n.
Therefore,

F×ps =
⋃

0<d|n

Ωd

and the union is disjoint. Therefore

n = |F×ps| =
∑
0<d|n

|Ωd| ≤
∑
0<d|n

ϕ(d) = n

Hence we have an equality and each Ωd is in fact non-empty and has exactly
ϕ(d) elements. Therefore F×ps has an element of order n and is thus cyclic.
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Corollary 14.6. The order of the Frobenius automorphism of Fps is s.
Therefore Gal(Fps/F) is a cyclic group generated by Frob.

Proof. Let m be the order of Frob of Fps . Then αp
m

= α for all α ∈ Fps . This
is equivalent to having αp

m−1 = 1 for all α ∈ F×ps . The least such m is s by
the previous proposition. Hence the order of the Frobenius automorphism of
Fps is s.

Theorem 14.7. The field Fps injects in Fps′ if and only if s|s′.

Proof.

=⇒ : Assume that Fps injects in Fps′ . Then the group Gal(Fps/F) can be
obtained through a quotient of the group Gal(Fps′/F). Hence s|s′.

⇐= : Conversely, if s|s′ then (Xps −X)|(Xps
′
−X). Therefore, a splitting

field of Xps
′
−X over Fp contains a splitting field of Xps −X over Fp.

Theorem 14.8. Let p be a prime and f(X) ∈ Fp[X] a irreducible polynomial
of degree d over Fp. Then Gal(f/F) is a cyclic group of order d. More
generally, if f is not irreducible but nreaks into r irreducible factors of degree
d1, d2, . . . , dr then Gal(f/Fp) is a cyclic group of order lcm(d1, d2, . . . , dr).

Proof. Let f(X) ∈ Fp[X] be an irreducible polynomial of degree d and
F = F[X]/(f(X)). Then F is a field and the extension F/Fp has degree
d. Therefore F ∼= Fpd . But we know that Fpd/F is a Galois extension. It
contains a root of f(X) and hence f(X) must split completely in Fps [X]. In
particular, Fpd contains the splitting field of f . Since deg(f) = d = [Fpd : Fp],
we must have that Fpd is a splitting field of f over Fp. Therefore Gal(f/Fp)
is a cyclic group of order d.



Chapter 15

Inverse Limits, Profinite
Groups and Topology

Definition 15.1. Let F be a set with a binary relation ≤ that is reflexive,
antisymmetric and transitive. Then we say that F is a partially ordered
set.

Definition 15.2. Let F be a partially ordered set and i, j ∈ F . We say that
F is directed if there exists k ∈ F such that i ≤ K and j ≤ K.

Definition 15.3. Let F be a directed partially ordered set and for every
i ∈ F let Gi be a finite group. Consider a pair i, j ∈ F such that i ≤ j
and ϕi,j : Gj → Gi a mapping satisfying ϕi,i = idGi

and if i ≤ j ≤ k then
ϕi,j ◦ ϕj,k = ϕi,k.
We define the inverse limit lim←−i∈F Gi to be the subset of

∏
i∈F Gi containing

all (xi)i∈F such that ϕi,j(xj) = xi for all i ≤ j. This is a subgroup of
∏

i∈F Gi.
A group of the form lim←−i∈F Gi is called a profinite group.

Example 15.4. Any finite group G is a profinite group. Indeed, we may
take F to be {1} and G1 = G.

Example 15.5. The set of natural numbers with usual ordering is a directed
partially ordered set. Let p be a prime number and for every n ∈ N, denote
Gn = Z/pnZ. The maps from Gn → Gm for any m ≤ n is the natural
projection. Then the inverse limit lim←−n Z/p

nZ is called the group of p-adic
integers.
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Example 15.6. We may consider another ordering on N. Let m ≤ n if m
divides n. Then, with this ordering, N is a directed partially ordered set. For
every n ∈ N, denote Gn = Z/nZ. We again take the map from Gn → Gm

to be the natural projection for any m|n. The inverse limit lim←−n Z/nZ is

denoted by Ẑ.

Example 15.7. We again consider N with its usual ordering and let Gn =
Z/pnZ. This time, consider the map ϕn : Gn → Gn−1 to be multiplication by
p. Then lim←−nGn = 0.

Example 15.8. Let K/F be a Galois extension (not necessarily finite) and
G = Gal(K/F ). Consider the set

F = {L |L/F is a finite Galois extension contained in K}

We have the natural directed partial ordering on F where L ≤ L′ if L ⊆ L′.
For every L ∈ F , we have the group GL = Gal(L/F ). For L ⊆ L′, there
is the obvious resstriction map GL′ → GL. Then F is non-empty and G ∼=
lim←−LGal(L/K).

Definition 15.9. Let X be a set and P(X) be the set of all subsets of X.
Then a topology on X is a subset T (X) of P(X) such that

1. X and the empty set ∅ are in T (X)

2. Arbitrary unions of sets in T (X) are in T (X)

3. Finite intersections of sets in T (X) are in T (X) A topological space is
a pair (X, T (X)) where X is a set and T (X) is a topology on X. The
subsets of X contained in T (X) are called open subsets of X. A subset
of X is called closed if its complement in X is open.

Definition 15.10. A basis of a topological space X is a collection B of open
subsets of X such that every open subset can be writen as the union of sets
in B.

Definition 15.11. Let G be a profinite group. Then the Krull Topology
on G is the topology with basis given by cosets of finite order subgroups of G.
Let K/F be a Galois extension. Then the Krull Topology on Gal(K/F )
is the one with the basis given by all cosets of Gal(K/L) where L is a finite
extension of K.
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Theorem 15.12. Let K/F be a Galois extension and G = Gal(K/F ). Let
G be endowed with the Krull topology. Then there is a bijection between
the closed subgroups H of G and the intermediate fields of K/F given by
H 7→ KH and L 7→ Gal(K/L).
For any subgroup H of G, we have that Gal(K/KH) = H.
A field L such that F ⊆ L ⊆ K is a Galois extension of F if and only if
Gal(K/L) is a normal subgroup of G. Moreover, the restriction map G →
Gal(L/F ) induces a continuous isomorphism

Gal(K/F )/Gal(K/L)→ Gal(L/F )



Chapter 16

Cyclotomic Extensions

Definition 16.1. We say that ζn is an nth root of unity if ζnn = 1. If
ζn = 1 but ζmn 6= 1 for all 1 ≤ m ≤ n − 1, we say that ζn is the primitive
nth root of unity.

Definition 16.2. Let K be a subfield of C. We say that the extension K(ζn)
is the nth cyclotomic extension of K.

Remark. The nth cyclotomic extension of K is the splitting field of Xn − 1
over K. Hence K(ζn)/K is Galois.

Lemma 16.3. Let n be a prime number. Then the minimal polynomial of
ζn over Q is Φn(X) := Xn−1 +Xn−2 + · · ·+ 1.

Proof. We note that

Φn(X) = Xn−1 +Xn−2 + · · ·+ 1 =
Xn − 1

X − 1

Hence Φn(ζn) = 0.

Lemma 16.4. Let n ∈ N. Then the minimal polynomial Φn(X) of ζn over
Q is

Φn(X) =
Xn − 1∏

0<d<n,d|n Φd(X)

Proof. Let f(X) be the minimal polynomial over Q. We prove that if p
is a prime nnumber not dividing n then ζpn is a root of f(X). Obviously,
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f(X)|(Xn − 1). Let Xn − 1 = f(X)h(X). By Gauss’ lemma, both f and h
have integer coefficients. Since Xn− 1 is a seperable polynomial, ζpn is either
a root of f(X) or h(X) but not both. Assume that ζpn is a root of h(X).
Then f(X)|h(Xp). Let h(Xp) = f(X)g(X) for some monic g(X) ∈ Z[X].
Now ap ≡ a (mod p) for all a ∈ Z implies that

f(X)g(X) = h(Xp) ≡ h(X)p (mod p)

Hence f(X) and g(X) have common factors modulo p and therefore Xn − 1
has multiple roots modulo p. But as p does not divide n and 0 is not a
root of Xn − 1, the polynomial Xn − 1 cannot have multiple roots modulo
p. Therefore ζpn must be a root of f(X). Hence f(X) is also the minimal
polynomial of ζpn over Q. Therefore, ζmn is also a root of f(X) for any m
coprime to n. Hence deg(f) ≥ ϕ(n).
Now we denote the minimal polynomial of ζn by Φn(X). Then we claim that∏

0<d|n

Φd(X) = Xn − 1

Note that Φd(X) 6= Φd′ if d 6= d′ as Φd(X)|Xd−1 and Φd′(X) does not divide
Xd− 1 if d′ > d. Hence Φd(X) are all pairwise coprime. Since Φd(X)|Xn− 1
for every d|n, we have that

∏
0<d|n Φd(X)|Xn− 1. Using the results from the

previous claim, we have that deg(Φd) ≥ ϕ(d) whence deg(
∏

0<d|n Φd(X)) ≥∑
0<d|n ϕ(d) = n. Hence we see that

∏
0<d|n Φd(X) = Xn − 1.

Remark. Using the above lemma, we can recursively find the nth cyclo-
tomic polynomial.

Corollary 16.5. [Q(ζn) : Q] = ϕ(n). More generally, [K(ζn) : K] ≤ ϕ(n).

Proof. Since the degree of Φn(X) is ϕ(n), the assertion about Q is clear.
Now we observe that Φn(X) is a monic polynomial with coefficients in Z.
We can therefore consider Φn(X) over any field and ζn is its root over such
a field. Hence the minimal polynomial of ζn over K divides Φn(X) and thus
[K(ζn) : K] ≤ deg(Φn(X)) = ϕ(n).

Proposition 16.6. Gal(Q(ζn)/Q) ∼= (Z/nZ)×. More generally, Gal(K(ζn)/K)
injects in (Z/nZ)×.
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Proof. We first observe that

Φn(X) =
∏

0≤i≤n,gcd(n,i)=1

(X − ζ in)

The elements of Gal(Q(ζn)/Q) are determined by the images of ζn. Hence

Gal(Q(ζn)/Q) = {σi | 0 ≤ i ≤ n, gcd(n, i) = 1}

where σi(ζn) = ζ in. It obviously follows that the map

Gal(Q(ζn)/Q)→ (Z/nZ)×

σi 7→ i

is an isomorphism.
For a general field K, the minimal polynomial of ζn over K is a divisor of
Φn(X). Hence only those σi’s lie om Gal(K(ζn)/K) for which ζ in is a root
of the minimal polynomial. Hence the above map forms an injection from
Gal(K(ζn)/K) in (Z/nZ)×.



Chapter 17

The equation Xn − a

Let K ⊆ C be a subfield and a ∈ K. Consider the polynomial Xn−a ∈ K[X].
If α is a root of Xn − a then all the roots are of the form {ζ inα | 0 ≤ i ≤ n}.
Hence the splitting field of Xn − a over K is K(ζn, α). The extension
K(ζn, α)/K is normal since it is the splitting field of a polynomial. It is
seperable as K as a subfield of C has characteristic 0.

To findGal(K(ζn, α)/K), we first consider the subgroupGal(K(ζn, α)/K(ζn)).

Proposition 17.1. Gal(K(ζn, α)/K(ζn) is a cyclic group of order dividing
n.

Proof. The conjugates of α over K(ζn) is a subset of

{ζ in | 0 ≤ i ≤ n}

Now we define a map

χ : Gal(K(ζn, α)/K(ζn))→ Z/nZλ 7→ i

if λ(α) = ζ inα. Then this mapping is a homomorphism and, since the image
of α determines elements of the Galois Group, the map is injective. It is
not necessarily surjective and is only so if Xn − a is irreducible over K(ζn).
Since the subgroups of any cyclic group are again cyclic groups, it follows
that Gal(K(ζn, α)/K(ζn)) is isomorphic to a cyclic group.

Corollary 17.2. Gal(K(ζn, α)/K) contains Gal(K(ζn, α)/K(ζn)) as a nor-
mal subgroup and the quotient is abelian.
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Proof. Using the fundamental theorem of Galois theory, since K(ζn)/K is a
Galois extension, the subgroup Gal(K(ζn, α)/K(ζn)) is a normal subgroup
of Gal(K(ζn, α)/K) and the quotient is isomorphic to Gal(K(ζn)/K) which
is cyclic and hence abelian by the previous proposition.

Proposition 17.3. Let K be a field containing ζn and L a Galois extension
of K such that Gal(L/K) is a cyclic group of order n. Then there exists an
element l ∈ L such that L = K(l) and ln ∈ K.

Proof. Let σ be the generator of Gal(L/K). Then σ induces a K-linear
transformation of the K-vector space L. Since σ is a finite order linear
transformation, it is diagonalisable. Since σn is the identity, the eigenvalues
of σ are the nth roots of 1. Since σm is not the identity for all ) < m < n
then there must be an eigenvalue which is a primitive nth root of 1. Let l ∈ L
be the corresponding eigevectro. We hence have that

σ(l) = ζl

where ζ is the primitive nth root of 1. Note that σ(ζ) = ζ as ζ ∈ K. Hence
σi(l) = ζ i. Therefore l has n conjugates over K. Therefore [K(l) : K] = n
and so K(l) = L. Furthermore, σ(ln) = σ(l)n = (ζl)n = ln. Hence ln ∈
L〈σ〉 = K.



Chapter 18

Solvability

Definition 18.1. A group G is called solvable if there exists a finite chain
of subgroups

{e} = G0 / G1 / · · · / Gn−1 / Gn = G

such that each Gi−1 is normal in Gi and the quotient group Gi/Gi−1 is cyclic
for 1 ≤ i ≤ n.

Lemma 18.2.

1. Let G be solvable and H ⊆ G a subgroup. Then H is solvable.

2. Let H /G be a normal subgroup. Then G is solvable if and only if both
H and G/H are solvable.

3. Any abelian group is solvable

Proof.

Part 1: Let G be a solvable group with a finite chain of subgroups

{e} = G0 / G1 / · · · / Gn−1 / Gn = G

such that Gi−1 is normal in Gi and the quotient group Gi/Gi−1 is cyclic for
1 ≤ i ≤ n. Let H be a subgroup of G and define Hi = Gi ∩ H for all
0 ≤ i ≤ n. Hence we get the chain

{e} = H0 / H1 / · · · / Hn−1 / Hn = H
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Each Hi−1 is normal in Hi. Indeed, let h ∈ Hi, then

hHi−1 = h (Gi−1 ∩H)

= (hGi−1) ∩ (hH)

We have that h ∈ Hi ⇐⇒ h ∈ Gi ∩ Hi =⇒ h ∈ Gi. It is also clear
that h ∈ H. Now since Gi−1 is normal in Gi and H is trivially normal with
respect to itself, we see that

hHi−1 = h (Gi−1 ∩H)

= (hGi−1) ∩ (hH)

= (Gi−1h) ∩ (Hh)

= (Gi−1 ∩H)h

= Hi−1h

The quotient group Hi/Hi−1 injects in Gi/Gi−1 and must hence be cyclic.
Therefore H is solvable.

Proposition 18.3. Let K be a field and n ∈ N. If the char(K) is positive,
we assume that n is coprime to char(K). Let a ∈ K. Then the Galois group
of Xn − a is solvable.

Proof. By Corollary 17.2, we can see thatGal(K(ζn, α)/K containsGal(K(ζn, α)/K(ζn))
as a normal subgroup and the quotient is abelian. Hence by the previous
lemma, Gal(K(ζn, α)/K is solvable.

Definition 18.4. Let L/K be a field extension. We say that L/K is a radi-
cal extension if there exists an element l ∈ L such that L = K(l) and ln ∈ K
for some n ∈ N.

Definition 18.5. Let L/K be a field extension. We say that L/K is solv-
able by radicals if there exists a chain of subfields

K = L0 ⊆ L1 ⊆ · · · ⊆ Ln−1 ⊆ Ln ⊇ L

such that Ln/K is Galois and each extension Li/Li−1 is a radical extension
for 1 ≤ i ≤ n.
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Definition 18.6. Let α be an algebraic element over K. Then we say that α
is solvable by radicals if K(α)/K is solvable by radicals.

Lemma 18.7. Let f(X) ∈ K[X] be an irreducible polynomial and α a root
of f(X). If α is solvable by radicals then so is any other root of f(X).

Proof. Let L = K(α) and each Li subfields fitting the definition of a solvable
by radical extension. Then Ln/K is Galois and contains α. Hence f(X)
splits completely in Ln. Let β be another root of f(X). Then K(β) ⊆ Ln.
Therefore K(β)/K is solvable by radicals.

Definition 18.8. We say that L/K is solvable if there exists a finite degree
Galois extension M/K such that L ⊆M and Gal(L/K) is a solvable group.

Theorem 18.9. Let L/K be a field extension. Then L/K is solvable if and
only if L/K is solvable by radicals.


