Galois Theory - 6CCM326A

Alexandre Daoud King's College London alex.daoud@mac.com

March 28, 2015

Chapter 1

Ring Theory Review

Definition 1.1. A commutative ring with 1 is a triple $(R, +, \times)$ comprising of a set R equipped with two binary operations, addition + and multiplication \times satisfying the following axioms:

- 1. (R, +) is an abelian group
- 2. Multiplication is associative
- 3. Multiplication distributes over addition
- 4. Multiplication is commutative
- 5. There exists $1_R \in R$ such that $1_R \times r = r \times 1_R = r$ for all $r \in R$

Remark. A normal ring does not require conditions 4 nor 5. We will refer to a commutative ring with 1 simply by ring henceforth.

Proposition 1.2. Consider an arbitrary ring R. Then there is a unique identity in R.

Proof. Let $e_1 \neq e_2 \in R$ be two distinct identities. By definition of a ring identity, we have that $e_1r = re_1 = r$ and $e_2r = re_2 = r$ for all $r \in R$. We thus have $e_1e_2 = e_2e_1 = e_1$ and $e_2e_1 = e_2e_1 = e_2$. But this means that $e_1 = e_2$ which is a contradiction. Hence R has a unique identity. \Box

Example 1.3. Typical examples of rings are $\mathbb{Z}, \mathbb{Q}, \mathbb{C}$ all equipped with their usual addition and multiplication.

Example 1.4. Let $n \in \mathbb{N}$, we define the ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n as follows:

We first define an equivalence relation \sim on X by

$$a \sim b$$
 if $a \equiv b \pmod{n}$

Then elements of $\mathbb{Z}/n\mathbb{Z}$ are the equivalence classes under this equivalence relation:

$$[a] = \{ b \in \mathbb{Z} \mid a \equiv b \pmod{n} \}$$

Addition and multiplication is defined as [a] + [b] = [a + b] and [a][b] = [ab]respectively.

Definition 1.5. Let R be a ring and X an indeterminate. We define the ring of polynomials in X over R R[X] to be

$$R[X] = \{c_0 + c_1 X + c_2 X^2 + \dots + c_n X^n \mid c_i \in R \ \forall \ 0 \le i \le n\}$$

We define addition and multiplication on R[X] as follows .

$$\left(\sum_{i} c_{i} X^{i}\right) + \left(\sum_{i} c_{i}' X^{i}\right) = \sum_{i} (c_{i} + c_{i}') X^{i}$$
$$\left(\sum_{i} c_{i} X^{i}\right) \times \left(\sum_{i} c_{i}' X^{i}\right) = \sum_{r} \left(\sum_{i+j=r} c_{i} c_{j}'\right) X^{r}$$

Remark.

- 1. We omit $c_i X^i$ when $c_i = 0$
- 2. We write $c_i X^i$ as X^i when $c_i = 1_R$

,

- 3. It is easily seen that R is a subset of R[X] when considering the map $r \mapsto r + 0X + 0X^2 + \dots$
- 4. If Y is any other indeterminate then we have that (R[X])[Y] = R[X][Y] =(R[Y])[X]

Definition 1.6. Let R[X] be a polynomial ring and $f \in R[X]$ an arbitrary polynomial. We define the **degree** of f to be

$$deg(f) = \begin{cases} \max\{i \mid c_i \neq 0\} & \text{if } \exists j \text{ s.t } c_j \neq 0_R \\ -\infty & \text{if otherwise} \end{cases}$$

Definition 1.7. Let $(R, +_R, \times_R)$ and $(S, +_S, \times_S)$ be two rings. We define a **ring homomorphism** to be a function $f : R \to S$ such that for all $r_1, r_2 \in R$

- 1. $f(r_1 +_R r_2) = f(r_1) +_S f(r_2)$
- 2. $f(r_1 \times r_2) = f(r_1) \times_S f(r_2)$
- 3. $f(1_R) = 1_S$

Definition 1.8. Let $(R, +, \times)$ be a ring. We say that a ring $(S, +_S, \times_S)$ is a subring of R if

- 1. $S \subseteq R$
- 2. $+_{S}|_{S \times S} = +_{R}$
- 3. $\times_S|_{S \times S} = \times_R$

Proposition 1.9. Let R be a ring and $S \subseteq R$ a subring. Then $1_S = 1_R$.

Proof. Consider $s \in S \subseteq R$. We have, by definition, that $s \times_S 1_S = 1_S \times_S s = s$. Since S is a subring of R, we therefore have that $s \times_R 1_S = 1_S \times_R s = s$. Now, since R is a ring, we can also see that $s \times_R 1_R = 1_R \times_R s = s$. From the two previous results, we have that $s \times_R 1_S = s \times_R 1_R$. Multiplying on the left by s^{-1} we can see that $1_S = 1_R$.

Definition 1.10. Let R be a ring. We say that a subset $I \subseteq R$ is an *ideal* of R if

- 1. (I, +) is a subgroup of (R, +)
- 2. $i \in I, r \in R$ then $ri \in I$

We will denote an ideal by $I \triangleleft R$. We say that for $r \in R$, $(r) = \{xr \mid x \in R\}$ is the **ideal generated by** r.

Definition 1.11. Let R be a ring and $I \triangleleft R$ an ideal. We say that I is a **principal ideal** if there exists an element $r \in R$ such that I = (r).

Definition 1.12. Let R be a ring and $I \triangleleft R$ an ideal. We define the **quotient** ring $(R/I, +_I, \times_I)$ as follows: We take the quotient of (R, +) by (I, +) to get the group $(R/I, +_I)$ where

$$R/I = \{ cosets \ of \ I \ in \ (R, +) \} = \{ [r]_I \ | \ r \in R \}$$

and if $r_1, r_2 \in R$ then

$$[r_1]_I +_I [r_2]_I = [r_1 + r_2]_I$$

The multiplication in R induces a multiplicative structure on R/I. If $r_1, r_2 \in R$ then

$$[r_1]_I \times_I [r_2]_I = [r_1 \times r_2]$$

Example 1.13. Let $n \in \mathbb{Z}$. Then the ring $\mathbb{Z}/n\mathbb{Z}$ is a quotient ring.

Definition 1.14. Let r_1 and r_2 be elements of a ring R. We say that $r_1 \neq 0$ divides r_2 if there exists $r_3 \in R$ such that $r_2 = r_1r_3$. Equivalently, r_1 divides r_2 if $(r_2) \subseteq (r_1)$. We denote this by $r_1|r_2$.

Definition 1.15. Let r be an element of a ring R. We say that r is a **unit** if r|1. Equivalently, r is a unit if the ideal generated by r is the ring R. We also define the set

$$R^{\times} = \{ r \in R \mid r \text{ is a unit } \}$$

to be the set of units of R.

Remark. Given a ring R, it is easy to see that R^{\times} is a group under multiplication with identity 1_R .

Definition 1.16. Let r be a non-zero element of a ring R. We say that r is a **zero divisor** if there is a non-zero $s \in R$ such that rs = 0.

Definition 1.17. A ring R is called a **field** if $R^{\times} = R - \{0\}$

Definition 1.18. A ring R is called an *integral domain* if it does not contain any zero divisors.

Definition 1.19. Let R be a ring. We define a homomorphism from the integers to R by

$$f_R : \mathbb{Z} \to R$$

$$f_R(n) = \begin{cases} \underbrace{1_R + \dots + 1_R}_{n \text{ times}} & \text{if } n > 0 \\ -\underbrace{(1_R + \dots + 1_R)}_{n \text{ times}} & \text{if } n < 0 \\ 0 & \text{if } n = 0 \end{cases}$$

This is known as the **characteristic homomorphism**. We define the **characteristic of a ring** R to be the unique non-negative integer n such that $ker(f_R) = (n)$.

Proposition 1.20. Let R be an integral domain. Then the characteristic of R is either 0 or a prime number.

Proof. Since R is an integral domain we have, by definition, that R has no zero-divisors. Now suppose that the characteristic n of R is composite. By definition of the characteristic of a ring we know that $f_R(n) = 0$. Now since n is composite, it must factor into some $a, b \in \mathbb{N}$. Since f_R is a ring-homomorphism (by construction) we have that

$$f_R(n) = 0$$

$$\implies f_R(ab) = 0$$

$$\implies f_R(a)f_R(b) = 0$$

We have found zero-divisors $f_R(a), f_R(b) \in R$ which is obviously a contradiction to the assumption that R is an integral domain. Hence n cannot be composite and is either 0 or a prime.

Definition 1.21. Let $I \triangleleft R$ be an ideal of a ring R. We say that I is a **prime** ideal if $I \neq R$ and if for all $r_1, r_2 \in R$

$$r_1r_2 \in I \implies r_1 \in I \text{ or } r_2 \in I$$

An element $r \in R$ is called a **prime element** if the ideal (r) is a prime ideal.

We can equivalently define a prime element r if $r \notin R^{\times}$ and if for all $r_1, r_2 \in R$

$$r|(r_1r_2) \implies r|r_1 \text{ or } r|r_2$$

Definition 1.22. An element $r \notin R^{\times}$ of a ring R is called *irreducible* if for all $r_1 \in R$

$$r_1|r \implies r_1 \in R^{\times}$$

Proposition 1.23. Let R be an integral domain. Then every prime element in R is irreducible.

Proof. Suppose R is an integral domain and suppose that a prime element p is reducible. By definition we have that p = ab for some $a, b \in R$. Obviously, p divides ab and since p is a prime element we know, by definition, that either p divides a or p divides b. Suppose, without loss of generality, that p divides a. By definition of divisibility we have that a = pk for some $k \in R$. Inserting this into p = ab, we have that

$$p = ab$$

$$\implies p = pkb$$

$$\implies p - pkb = 0$$

$$\implies p(1 - kb) = 0$$

Since R is an integral domain, we know that R has no zero divisors. Hence either p = 0 or 1 - kb = 0.

If p = 0 then p is irreducible and we are done so assume that 1 - kb = 0. It follows that 1 = kb and hence both k and b must be units. However this contradicts the assumption that p is reducible as we require both a and b to be non-unitary factors of p. Hence p must be irreducible.

Definition 1.24. A ring R is called a **unique factorisation domain** if it is an integral domain and if every non-zero element can be uniquely written as a product of irreducible elements.

Proposition 1.25. Let R be a unique factorisation domain. Then every irreducible element of R is a prime.

Proof. Suppose R is a unique factorisation domain. Let $p \in R$ be an irreducible element and suppose that $ab \in (p)$ for some $a, b \in R$. We have that ab = kp for some $k \in R$. Since R is a unique factorisation domain, a, b and k can be expressed as a unique product of irreducibles. Hence

$$\alpha_1 \dots \alpha_n \beta_1 \dots \beta_m = \gamma_1 \dots \gamma_l p \tag{1.1}$$

for some irreducible $\alpha_i, \beta_j, \gamma_k \in R$. Since each factorisation of a, b and k must be unique, the irreducibles on the left hand side of (1.1) must match up with one on the right. Since p itself is an irreducible, it must match up with an irreducible on the left hand side. Hence p must be a factor of either a or b and thus $a \in (p)$ or $b \in (p)$ and p is a prime element. \Box

Definition 1.26. A ring R is called a **principal ideal domain** if it is an integral domain and every ideal of R is a principal ideal.

Proposition 1.27. Let R be a principal ideal domain. Then it is a unique factorisation domain.

Definition 1.28. Let $I \triangleleft R$ be an ideal of a ring R. We say that I is a **maximal ideal** if $I \neq R$ and if $I \subseteq J \triangleleft R$ for some ideal J then I = J or J = R.

Proposition 1.29. Let R be a ring and $I \triangleleft R$ an ideal. Then

- 1. I is a prime ideal if and only if the quotient ring R/I is an integral domain
- 2. I is a maximal ideal if and only if the quotient ring R/I is a field.
- 3. Every maximal ideal is also a prime ideal

Proof.

Part 1:

 \implies : Let R be a ring and $I \triangleleft R$ a prime ideal. We want to show that R/I is an integral domain. We first note that from the definition of cosets, for an ideal I and an element $r \in R, r + I = I \implies r \in I$ and that I is itself the zero element of the quotient ring. Now suppose that (r + I)(s + I) = I for some $r + I, s + I \in R/I$. By the definition of multiplication in a quotient ring, it follows that rs + I = I. From the properties of cosets mentioned before, this means that $rs \in I$. Now since I is a prime ideal, we have that either $r \in I$ or $s \in I$. But this just means that r + I = I or s + I = I which is exactly what it means for R/I to be an integral domain.

 \Leftarrow : Now suppose that R/I is an integral domain. We need to show that I is a prime ideal. Let $a, b \in R$ be such that $ab \in I$. By the definition of the

quotient ring R/I, we have that ab + I = I. It follows from the definition of multiplication in a quotient ring that (a + I)(b + I) = I. Since R/I is an integral domain, this must mean that either a + I = I or b + I = I. Thus $a \in I$ or $b \in I$. We have shown that if $ab \in I$ then $a \in I$ or $b \in I$, hence I is a prime ideal.

Part 2:

 \implies : Let R be a ring and $I \triangleleft R$ a maximal ideal. We want to show that R/I is a field. In particular, we have to show that $(R/I)^{\times} = R/I - 0_{R/I} = R/I - I$. Let $a + I \in R/I$ be a non-zero element. We want to show that there exists a $b+I \in R/I$ such that (a+I)(b+I) = 1+I. By the definition of multiplication in a quotient ring, we have that (a + I)(b + I) = ab + I = 1 + I. Hence it suffices to show that there exists $b \in R$ such that $ab - 1 \in I$. Now consider the ideal

$$J = \{ar + i \mid i \in I\}$$

for some $r \in R$. Obviously, this ideal properly includes the ideal I. But I is a maximal ideal so J must be equal to R. Hence ar + i = 1 for some $r \in R$ and $i \in I$. This implies that $ar - 1 \in I$. Passing back to the quotient ring, we see that (ar - 1) + I = I which implies that ar + I = 1 + I. By the definition of multiplication in the quotient ring, we have that (a + I)(r + I) = 1 + I. Hence we have found a b, namely r, for which a + I has an inverse in the quotient ring. Hence the quotient ring is a field.

 \Leftarrow : Now suppose that R/I is a field. In particular, every non-zero element of R/I has an inverse. We want to show that I is a maximal ideal. Consider $J \supseteq I$ an ideal of R properly containing I and let $a \in J$ such that $a \notin I$. It follows that $a + I \neq I$ and hence, since R/I is a field, (a + I)(b + I) = 1 + Ifor some $b \in R$. By the definition of multiplication in the quotient ring, we have that $ab - 1 \in I$. Denote i = ab - 1. We can see that 1 = ab - m. Since $a, m \in J$, it follows that $1 \in J$ which must mean that J = R. Hence I is a maximal ideal.

Part 3: Let I be a maximal ideal of R. By part 2, we have that R/I is a field. Since all fields are integral domains, we have that R/I is an integral domain. By part 1, this must mean that I is a prime ideal.

Lemma 1.30. Let R and S be two rings and $f : R \to S$ a homomorphism of rings. Then

- 1. $ker(f) = \{r \in R \mid f(r) = 0\}$ is an ideal of R
- 2. Im(f) is a subring of S
- 3. f induces an isomorphism of rings

$$\frac{R/\ker(f) \to Im(f)}{[r]_{\ker(f)} \mapsto f(r)}$$

for all $r \in R$.

Chapter 2

Polynomial rings

Definition 2.1. Let $f(X) = (c_0, c_1, ...) = \sum_i c_i X^i$ be a non-zero polynomial. The **leading term** (leading coefficient) if f(X) is defined to be $c_d X^d(c_d)$. We say that f(X) is **monic** if the leading coefficient is 1.

Lemma 2.2. Let R be a ring and $f_1, f_2 \in R[X]$ two polynomials. Then

- 1. $\deg(f_1 + f_2) \le \max\{\deg(f_1), \deg(f_2)\}\$
- 2. $\deg(f_1f_2) \leq \deg(f_1) + \deg(f_2)$ with equality holding if R is an integral domain.

Proof. If either f_1 or f_2 are the zero polynomial then we are done hence suppose that $f_1, f_2 \neq 0$. Let $f_1(X) = \sum_i c_i X^i$ and $f_2(X) = \sum_i d_i X_i$ for some constants $c_i, d_i \in R$.

Part 1: By the definition of addition of polynomials, we have that

$$\deg\left(f_1(X) + f_2(X)\right) = \deg\left(\sum_i (c_i + d_i)X^i\right)$$

By the definition of the degree of a polynomial, it follows that

$$deg\left(\sum_{i} (c_{i} + d_{i})X^{i}\right) = \max\{i \mid c_{i} + d_{i} \neq 0\}$$

$$\leq \max\{\max\{i \mid c_{i} \neq 0\}, \max\{i \mid d_{i} \neq 0\}\}$$

$$= \max\{deg(f_{1}), deg(f_{2})\}$$

Part 2: Let $c_n X^n$ be the leading term of $f_1(X)$ and $d_m X^m$ the leading term of $f_2(X)$. Then by the definition of polynomial multiplication, we have that $f_1(X)f_2(X) = e_{n+m}X^{n+m} + \cdots + e_0$ for some constants $e_i \in R$. Obviously, the degree of $f_1(X)f_2(X)$ can be no greater than n+m. Hence we have that $\deg(f_1(X)f_2(X)) \neq \deg(f_1) + \deg(f_2)$.

Since the ring R could have zero divisors, it could happen that $0 = e_{n+m} = c_n d_m$ and hence $\deg(f_1(X)f_2(X)) < \deg(f_1(X)) + \deg(f_2(X))$. Hence it follows that $\deg(f_1(X)f_2(X)) \le \deg(f_1) + \deg(f_2)$.

In the case where R is an integral domain, it cannot have any zero divisors meaning e_{n+m} cannot be 0 hence the degree of $f_1(X)f_2(X)$ can never be less than n + m. We are thus left with $\deg(f_1(X)f_2(X)) = \deg(f_1) + \deg(f_2)$

Corollary 2.3. Let R be a ring. We have that

1. R is an integral domain if and only if R[X] is an integral domain

2. $R^{\times} \subseteq R[X]^{\times}$ with equality if R is an integral domain

Proof.

Part 1:

 \implies : Assume R is an integral domain and consider two polynomials $f, g \in R[X]$. Suppose that $fg = 0_R$ with $f, g \neq 0_R$. We can write $f = a_n X^n + \cdots + a_0$ and $g = b_n X^n + \cdots + b_0$ for some $a_i, b_i \in R$. We know that the leading term of fg, by definition of multiplication of polynomials is $a_n b_n X^n$. Since $fg = 0_R$, we require that $a_n b_n = 0_R$. Since R is an integral domain, either $a_n = 0_R$ or $b_n = 0_R$. Suppose, without loss of generality that $a_n = 0_R$. This is a contradiction however as we assumed that $f \neq 0 \implies a_n \neq 0_R$. Hence if $fg = 0_R$ then either $f = 0_R$ or $g = 0_R$ and R[X] is an integral domain.

 \Leftarrow : Assume R[X] is an integral domain and consider $a, b \in R$. Now consider the two polynomials f(X) = a and g(X) = b in R[X]. Assume that $fg = 0_R$. This is equivalent to the assumption that $ab = 0_R$. Since R[X]is an integral domain, this means either f(X) = a = 0 or f(X) = b = 0, meaning that R is an integral domain.

Theorem 2.4. Let R be a field and $f, g \in R[X]$ two non-zero polynomials. Then there exists $q, r \in R[X]$ such that f = qg + r with $\deg(r) < \deg(f)$. Furthermore, q and r are uniquely determined by f and g.

CHAPTER 2. POLYNOMIAL RINGS

Proof. If $\deg(f) < \deg(g)$, we can take q = 0 and r = f and we are done so assume that $\deg(f) \ge \deg(g)$.

Now set $f(X) = a_n X^n + \cdots + a_0$ and $g(X) = b_m X^m + \cdots + b_0$ for some $a_i, b_i \in R$. We will prove the theorem by induction on the degree of f. For the base step, let $\deg(f) = 1$ and we can take $q = \frac{a_n}{b_n}$ and r = f - qg. Now assume that the theorem is true for $\deg(f) = k - 1$. We want to show that it is true for $\deg(f) = k$.

Consider the polynomial

$$h = f - \frac{a_n}{b_m} X^{n-m} g$$

= $a_n X^n + \dots + a_0 - \frac{a_n}{b_m} X^{n-m} [b_m X^m + \dots + b_0]$
= $a_n X^n + \dots + a_0 - \left[a_n X^n + \frac{a_n b_{m-1}}{b_m} X^{n-1} + \dots + \frac{a_n b_0}{b_m} X^{n-m}\right]$
= $\frac{a_n b_{m-1}}{b_m} X^{n-1} + \dots + \frac{a_n b_0}{b_m} X^{n-m} + \dots + a_0$

Obviously, this polynomial has degree k-1 and by the induction hypothesis, there exists a q_1 and r_1 such that $h = gq_1 + r_1$. Now we have that

$$h = gq_1 + r_1$$

$$\implies f - \frac{a_n}{b_m} X^{n-m}g = gq_1 + r_1$$

$$\implies f = gq_1 + \frac{a_n}{b_m} X^{n-m}g + r_1$$

$$\implies f = g(q_1 + \frac{a_n}{b_m} X^{n-m}) + r_1$$

Hence we have found a $q = q_1 + \frac{a_n}{b_m} X^{n-m}$ and $r = r_1$ hence the theorem is true for deg(f) = k.

Now assume that $f = gq_1 + r_1$ and $f = gq_2 + r_2$ for distinct q_1, q_2 and r_1, r_2 with $deg(r_1) < g$ and $deg(r_2) < g$. We have that

$$gq_1 + r_1 = gq_2 + r_2$$
$$\implies g(q_1 - q_2) = r_2 - r_1$$

Hence $g|(r_2-r_1)$ but since $deg(r_2-r_1) < deg(g)$, we must have that $r_2-r_1 = 0 \implies r_2 = r_1$. Furthermore, we then have that $g(q_1 - q_2) = 0$ and since $g \neq 0$, we must have $q_1 = q_2$.

Corollary 2.5. Let R be a field and $f, g \in R[X]$ not both zero. Then there exists a unique $h \in R[X]$ such that

- 1. h|f and h|g
- 2. h is monic
- 3. the degree of h is maximal among all $l \in R[X]$ such that l|f and l|g

Such a polynomial is called the greatest common divisor of f and g.

Proof. Consider the set

$$S = \{a(X)f(X) + b(X)g(X) \mid a(X), b(X) \in R[X], af + bg \neq 0\}$$

and let $h_1(X) = a_1(X)f(X) + b_1(X)g(X) \in S$ be the polynomial of least degree. If the leading coefficient is not 1_R , we can multiply though by its inverse, say a_n^{-1} , to obtain a monic polynomial h(X) = a(X)f(X) + b(X)g(X) where $a(X) = a_n^{-1}a_1(X)$ and $b(X) = a_n^{-1}b_1(X)$. We claim that h(X)|f(X) and h(X)|g(X).

By the division algorithm for polynomials, we have that

$$f(X) = h(X)q(X) + r(X), \quad \deg(r(X)) < \deg(h(X))$$
$$\implies r(X) = f(X) - h(X)q(X) \tag{2.1}$$

After substituting h(X) into (2.1), we are left with

$$r(X) = f(X)(1 - q(X)a(X)) - q(X)b(X)g(X)$$

Now since deg(r(X)) < deg(h(X)) and h(X) is, by assumption, the polynomial of least degree in S, we have that $r(X) \notin S$. This implies that r(X) must equal 0.

We thus have that f(X) = h(X)q(X) meaning that h(X)|g(X). A similar argument can be applied to g(X) to arrive at h(X)|g(X).

The polynomial h(X) is monic by construction so it remains to show the third part.

Consider a polynomial l(X) such that l(X)|f(X) and l(X)|g(X). Then we have that l(X)|(a(X)f(X) + b(X)g(X)) for all $a(X), b(X) \in R[X]$. In particular, l(X) must divide h(X). Hence h(X) must be the polynomial of maximal degree dividing both f(X) and g(X).

Corollary 2.6. If R is a field then R[X] is a principal ideal domain.

Proof. Consider an ideal $I \triangleleft R[X]$. If I is the zero ideal then it is principal and we are done, hence let $I \neq \{0\}$. Now consider the set

$$S = \{ f(X) \in I \, | \, f(X) \neq 0 \}$$

and choose $h(X) \in S$ such that h(X) is of minimal degree. We claim that I = (h(X)). It suffices to show that f(X) = h(X)q(X) for some $q(X) \in$ R[X].

Since R is a filed, we can apply the division algorithm for polynomials and we have that

$$f(X) = q(X)h(X) + r(X), \quad \deg(r(X)) < \deg(h(X))$$

for some $q(X), r(X) \in R[X]$. It follows that r(X) = f(X) - q(X)h(X). Since $f(X), h(X) \in I$, we can see that $r(X) \in I$. But r(X) has degree strictly less than h(X) and h(X) is a non-zero polynomial of least degree, hence r(X) = 0.

Corollary 2.7. Let R be a field and consider a polynomial $g(X) \in R[X] \setminus R$. Then q(X) is irreducible if and only if the ideal generated by q(X) is maximal ideal of R[X].

Proof.

Let R be a field and $q(X) \in R[X] \setminus R$ an irreducible polynomial. \implies : We want to show that (q(X)) is maximal. Consider a polynomial $f(X) \in$ R[X] such that $(g(X)) \subseteq (f(X)) \subseteq R[X]$. We therefore have that for some polynomial $h(X) \in R[X], g(X) = f(X)h(X).$

Now since f(X) is irreducible, we have that either $h(X) \in R[X]^{\times}$ or $q(X) \in$ $R[X]^{\times}$. But (f(X)) is a proper principal ideal and hence we cannot have that $f(X) \in R[X]^{\times}$. Hence $h(X) \in R[X]^{\times}$. Therefore (f(X)) = (q(X)) and the ideal generated by g(X) is maximal across all proper ideals of R[X].

 \Leftarrow : Now suppose that (q(X)) is maximal. We want to show that (q(X)) is irreducible. Assume that (q(X)) is reducible and hence q(X) =f(X)h(X) for some non-units $f(X), h(X) \in R[X]$. Now since neither f(X)and h(X) are non-units, we have that $(g(X)) \subsetneq (f(X))$ which contradicts the maximality of (q(X)). Hence q(X) must be irreducible.

Definition 2.8. Let $f(X) = \sum_{i=0}^{d} c_i X^i$ be a polynomial in R[X]. We define the evaluation map at r to be the map

$$ev_r: R[X] \to R$$

 $f(X) \mapsto f(r)$

Lemma 2.9. Let R be a ring and $S \subseteq R$ a subring. Consider $r \in R$. The smallest subring of R which contains both S and r is $S[R] = ev_r|_{S[X]}$.

Lemma 2.10. Consider a ring R and the evaluation map ev_r for some $r \in R$ and $f(X) = \sum_{i=0}^{d} c_i X^i \in R[X]$. Then the kernel of the map ev_r is the principal ideal (X - r).

Proof. By the definition of the kernel, we have that the kernel of the evaluation map is

$$\ker(ev_r) = \{ f(X) \in R[X] \mid f(r) = 0 \}$$

Obviously, this corresponds to all polynomials that have $r \in R$ as a root which is equivalent to all polynomials generated by the ideal (X - r). \Box

Definition 2.11. Consider a polynomial $f \in \mathbb{Z}[X]$. We say that f is **prim***itive* if $\deg(f) \ge 1$ and if the greatest common divisor of the coefficients of f is 1.

Lemma 2.12. Consider two primitive polynomials $f = \sum_i a_i X^i, g = \sum_i b_i X^i \in \mathbb{Z}[X]$. Then their product fg is a primitive polynomial

Proof. Let h(X) = f(X)g(X). Suppose that h(X) is not primitive. Then there exists a prime p that is a common divisor of all the coefficients of h(X). Since f(X) and g(X) are primitive, p cannot be a divisor of all of the a_i or all of the b_i . Let $a_r X^r$ and $b_s S^r$ be the terms of highest degree whose coefficient p does not divide, respectively in f(X) and g(X). Now consider the term of degree r + s in h(X). By the definition of multiplication of polynomials, its coefficient is given by

$$\sum_{k+l=r+s} a_k b_l$$

This sum contains the term $a_r b_s$ which is not divisible by p. Hence the entire sum is not divisible by p. This is a contradiction to the assumption that p is a common divisor of all the coefficients of h(X). Hence there does not exist a prime which divides all the coefficients of h(X), thus it is primitive. \Box

Proposition 2.13. Consider a primitive polynomial $f \in Z[X]$. Then f is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$.

Proof.

 \implies : Let f be a primitive polynomial that is irreducible in $\mathbb{Z}[X]$ and let f(X) = g(X)h(X) where $g(X), h(X) \in \mathbb{Q}[X]$. We can choose $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ such that $\frac{a}{b}f(X)$ and $\frac{c}{d}g(X)$ are primitive. Hence, by the previous lemma, $\frac{ac}{bd}f(X)$ is a primitive polynomial. But f(X) is itself, by assumption, a primitive polynomial. Thus $\frac{ac}{bd} = 1$.

We therefore have that $\frac{ab}{cd}g(X)h(X) = (\frac{a}{b}g(X))(\frac{c}{d}h(X))$ is a factorisation of f(X) in $\mathbb{Z}[X]$. Since f(X) is irreducible, we must either have that $\frac{a}{b}g(X) \in \mathbb{Z}^{\times}$ or $\frac{c}{d}h(X) \in \mathbb{Z}^{\times}$. Hence $g(X) \in Q[X]^{\times}$ or $h(X) \in Q[X]^{\times}$.

 \Leftarrow : Now assume that f is a primitive polynomial that is irreducible in $\mathbb{Q}[X]$. Since $\mathbb{Z} \subseteq \mathbb{Q}$, it follows that f must be irreducible in $\mathbb{Z}[X]$.

Remark. The two previous lemmas are together referred to as **Gauss' Lemma**.

Proposition 2.14. (Eisenstein's Criterion) Let $f(X) = \sum_{i=0}^{n} c_i X^i$ be a primitive polynomial of degree n in $\mathbb{Z}[X]$. If there exists a prime p such that

- 1. $p | c_i \text{ for } 0 \le i < n$
- 2. p^2 does not divide c_0

then f(X) is irreducible in $\mathbb{Q}[X]$.

Proof. Consider a prime p satisfying the hypothesis and the image f(X) of f(X) under the map

$$\mathbb{Z}[X] \to \mathbb{F}_p[X]$$
$$c_i \mapsto c_i \pmod{p}$$

Since $p|c_i$ for $0 \le i < n$ and f(X) is a primitive polynomial, the leading term of $\overline{f}(X)$ must be 1 while the other terms are congruent to 0 modulo p. Hence we have that $\overline{f}(X) = X^n$.

Now suppose that f(X) is reducible. We have that f(X) = g(X)h(X) for some $g(X), h(X) \in \mathbb{Z}[X]$ and $\deg(f) > \deg(g), \deg(h)$. Then $\overline{g}(X) = X^m$ and $\overline{h}(X) = X^{n-m}$ for some 0 < m < n. Hence the constant term of g(X) and h(X) are both divisible by p. This would imply that the constant term of f is divisible by p^2 which contradicts the assumptions for the prime p. Hence f must be irreducible.

Chapter 3

Field Extensions

Definition 3.1. Let L be a field and $K \subseteq L$ a subfield. We define the **field** extension of L over K to be the pair (K, L) and denote it by L/K.

Remark. We can consider a field L to be a vector space over one of its subfields K. The elements of L are the vectors and the elements of K are the scalars

Definition 3.2. Let L/K be a field extension. We define the **degree** of K/L to be the dimension of L as a K-vector space. It is denoted by [L:K].

Example 3.3. Let K be a field and $f(X) \in K[X]$ an irreducible polynomial of positive degree. Then K[X]/(f(X)) is a field by previous results and the map

$$i_f: K \to K[X]/(f(X))$$
$$k \mapsto [k]_{f(X)}$$

is a ring homomorphism. This gives a field extension (K, K[X]/(f(X)))whose degree is equal to deg(f).

Theorem 3.4. (Tower Law) Consider two field extensions L/K and M/L. Then M/K is a field extension and

$$[M:K] = [M:L][L:K]$$

Proof. Let $\{m_{\alpha} \mid \alpha \in I\}$ be an L-basis of M and $\{l_{\beta} \mid \beta \in J\}$ be a K-basis of L. We will show that $\{m_{\alpha}l_{\beta} \mid \alpha \in I, \beta \in J\}$ is a K-basis of M. Consider $m \in M$. Then

$$m = \sum_{i=1}^{n} x_i m_{\alpha_i}$$

for some $x_i \in L$. Now we can write each x_i as

$$x_i = \sum_{j=1}^k y_{ij} l_{\beta_j}$$

for some $y_{ij} \in K$. Thus

$$m = \sum_{i} \sum_{j} y_{ij} m_{\alpha_i} l_{\beta_j}$$

Hence the set $\{m_{\alpha}l_{\beta} \mid \alpha \in I, \beta \in J\}$ spans M as a K-vector space. Now, if

$$\sum_{i,j} a_{ij} m_{\alpha_i} l_{\beta_j} = 0$$

with $a_i j \in K$, then

$$\sum_{i} \left(\sum_{j} a_{ij} l_{\beta_j} \right) m_{\alpha_i} = 0$$

Since $\{m_{\alpha} \mid \alpha \in I\}$ is linearly independent over L, we can see that $\sum_{j} a_{ij} l_{\beta_j} = 0$ for each *i*. Again, since $\{l_{\beta} \mid \beta \in J\}$ is linearly independent over K, we can see that $a_i j = 0$ for all i, j. Hence $\{m_{\alpha} l_{\beta} \mid \alpha \in I, \beta \in J\}$ is linearly independent and thus it forms a K-basis for M. The cardinality of this set is exactly equal to the product of the cardinalities of $\{m_{\alpha} \mid \alpha \in I\}$ and $\{l_{\beta} \mid \beta \in J\}$ hence it also follows that

$$[M:K] = [M:L][L:K]$$

Chapter 4

Algebraic Extensions

Definition 4.1. Let L/K be a field extension. An element $l \in L$ is said to be **algebraic** over K if there exists a non-zero polynomial $f \in K[X]$ such that f(l) = 0. If there exists no such polynomial, the element l is said to be **transcendental** over K. The extension L/K is said to be **algebraic** if every element of L is algebraic over K.

Example 4.2. Let L/K be a field extension and $l \in L$. Consider the evaluation at l

$$ev_L: K[X] \to L$$

 $f(X) \mapsto f(l)$

It follows from this that l is transcendental over K if and only if ev_l is injective.

Proposition 4.3. Let L/K be a finite dimensional field extension. Then L/K is algebraic.

Proof. Let L/K be a finite extension and $l \in L$. Consider the set

$$\{1, l, l^2, \dots\}$$

If this set is finite then $l^n = 1$ for some $n \in \mathbb{N}$. This implies that l is a root of the polynomial $f(X) = X^n - 1 \in K[X]$ and hence l is algebraic over K. If the set is infinite then it cannot be linearly independent over K. Hence we have that

$$\sum_{i} a_i l^i = 0$$

for some $a_i \in K$. Therefore, l is a root of $f(X) = \sum_i a_i X^i \in K[X]$ and l is algebraic over K.

Proposition 4.4. Let L/K be a field extension and $l \in L$ be algebraic over K. Then there is a unique polynomial $p(X) \in K[X]$ such that

- 1. p(X) is monic
- 2. p(l) = 0
- 3. deg(p(X)) is minimal among the polynomials $q(X) \in K[X]$ satisfying q(l) = 0

Furthermore, this polynomial is irreducible and is called the **minimal polynomial** of l over K. It is denoted by $\min_{l,K}(X)$.

Proof. Consider the evaluation map

$$ev_l: L[X] \to L$$

 $f(X) \mapsto f(l)$

Let $e = ev_l|_{K[X]}$ and $I = ker(e) \subseteq K[X]$. Since l is algebraic over K, the ideal I is non-trivial. It is also not the whole ring K[X] since 1_K maps to itself and is hence not in the kernel. Therefore, since a polynomial ring is a principal ideal domain, we have that I = (p(X)) for some non-constant polynomial $p(X) \in K[X]$.

Now assume that p(X) is monic. Obviously, p(X) satisfies all three conditions listed in the proposition.

To show that p(X) is irreducible, assume that it is reducible. Then p(X) = f(X)g(X) for some non-units $f(X), g(X) \in K[X]$ with $\deg(p) > \deg(f), \deg(g)$. Then p(l) = f(l)g(l) = 0. This means that either f(l) = 0 or g(l) = 0. But this contradicts the fact that p(X) is the polynomial of least degree in K[X] where l is a root. Therefore, p(X) is irreducible in K[X].

Proposition 4.5. Let L/K be a field extension and $l \in L$ algebraic. Then there exists a unique isomorphism of rings

$$\theta_l : K[X]/(p(X)) \to K[l]$$

$$[X]_{(p(X))} \mapsto l$$

$$[k]_{(p(X))} \mapsto k, \quad \forall k \in K$$

In particular, K[l] is a field and the degree of the extension K[l]/K is equal to deg(p(X)).

Proposition 4.6. Let L/K be a field extension and $L \in L$ transcendental. Then there exists a unique isomorphism of rings

$$\begin{aligned} \theta_k &: K[X] \to K[l] \\ X &\mapsto l \\ k &\mapsto k, \quad \forall k \in K \end{aligned}$$

In particular, K[l] is not a field and the degree of the field extension is infinite.

Definition 4.7. Let L/K be a field extension and $l_1, l_2 \in L$. l_1 and l_2 are said to be **conjugates** if they are both algebraic over K and have the same minimal polynomial.

Corollary 4.8. Let K be a field, $f(X) \in K[X]$ irreducible and L_1, L_2 extensions of K. If l_1 and l_2 are roots of f(X) in L_1 and L_2 respectively then there exists a unique isomorphism of fields

$$\begin{aligned} \theta : K[l_1] \to K[l_2] \\ l_1 \mapsto l_2 \\ k \mapsto k, \quad \forall k \in K \end{aligned}$$

Proof. This follows by considering the maps

$$K[L_1] \leftarrow K[X]/(p(X)) \to K[L_2]$$

Definition 4.9. Let R be an integral domain and consider the set $\{\frac{r}{s} \mid r, s \in R, s \neq 0\}$. We define an equivalence relation $\frac{r}{s} \sim \frac{r'}{s'} \iff rs' = r's$. We then define

$$Frac(R) = \left\{\frac{r}{s} \, | \, r, s \in R, s \neq 0\right\} / \sim$$

to be the field of fractions of R.

Lemma 4.10. Let R be an integral domain. Then

- 1. Frac(R) is a field
- 2. R injects into Frac(R) with the map $r \to \frac{r}{1_R}$

3. If $\sigma : R \to K$ is an injective ring homomorphism then there is a unique ring homomorphism $\tilde{\sigma} : Frac(R) \to K$ such that the following diagram commutes

Example 4.11. $Frac(\mathbb{Z}) \cong \mathbb{Q}$

Example 4.12. If R is a field then $Frac(R) \cong R$

Remark. Let L/K be a field extension and l_1, \ldots, l_n elements of L. Then we write

$$K(l_1,\ldots,l_n) := Frac(K[l_1,\ldots,l_n])$$

Definition 4.13. Let L/K be a field extension. We say that L is **generated** by l_1, \ldots, l_n over K if $L = K(l_1, \ldots, l_n)$. The elements l_1, \ldots, l_n are called **generators** of L over K.

Definition 4.14. Let L/K be a field extension. We say that L/K is simple if L is generated by a single element over K.

Chapter 5

Embeddings of Fields

Definition 5.1. Let K be a field and $f(X) \in K[X]$ a polynomial. We say that f(X) splits completely in K if

$$f(X) = c(X - k_1) \dots (X - k_n)$$

for some $c, k_1, \ldots, k_n \in K$.

Proposition 5.2. Let K be a field and $f(X) \in K[X]$ a polynomial. Then there exists a field extension L/K of finite degree such that f(X) splits completely in L[X].

Proof. We prove the theorem by induction on deg(f). For the basis case, assume deg(f) = 1. By definition, f(X) splits completely in K[X]. Now assume that the proposition is true for any polynomial $f(X) \in K[X]$ with $deg(f(X)) \leq n$. Hence there exists a field extension L of K in which f(X) splits completely.

We now consider a polynomial f(X) where $\deg(f(X)) = n + 1$. If f(X) is reducible then we can write f(X) = g(X)h(X) where $\deg(g), \deg(h) \leq n$. By the induction hypothesis, we can find a field extension L_1 of K in which g(X) splits completely. We can again apply the induction hypothesis to L_1 and h(X) to obtain a field L_2 in which h(X) splits completely. Hence f(X)splits completely in L_2 and we are done.

On the other hand, if f(X) is irreducible over K[X] then we can take the finite extension $L_1 = K[X]/(f(X))$. Then L_1 contains a root of f(X). Hence f(X) is reducible over L_1 and by the previous case, we can construct a finite extension of L_1 containg all roots of f(X).

Definition 5.3. Let K be a field and $f(X) \in K[X]$ a polynomial. Consider an extension L/K such that f(X) splits completely in L[X], say $f(X) = c(X - l_1) \dots (X - l_n)$ where $c, l_1, \dots, l_n \in L$. The subfield of L generated by l_1, \dots, l_n over K is called a **splitting field** of f(X) over K.

Definition 5.4. Let L_1/K and L_2/K be two field extensions. A *K*-embedding (*K*-isomorphism) from L_1 to L_2 is an injective (bijective) ring homomorphism that fixes all elements of K:

$$\theta: L_1 \to L_2$$

such that $\theta|_k$ is the identity map.

Remark. Let $\theta : L_1 \to L_2$ be a ring homomorphism. It extends uniquely to a ring homomorphism

$$\overline{\theta} : L_1[X] \to L_2[X]$$
$$\sum_i c_i X^i \mapsto \sum_i \theta(c_i) X^i$$

We note that

- 1. If θ is injective then $\overline{\theta}$ is injective
- 2. Let $f(X) \in L_1[X]$. An element $l_1 \in L_1$ is a root of f(X) if and only if $\theta(l_1)$ is a root of $\theta(f(X))$
- 3. Assume that θ is bijective. The polynomial f(X) is irreducible in $L_1[X]$ if and only if $\overline{\theta}(f(X))$ is irreducible in $L_2[X]$

Definition 5.5. Let L/K be a field extension and σ : LtoL an automorphism. We say that σ is a K-automorphism if σ fixes every element of K.

Proposition 5.6. Let L/K be an algebraic field extension. Then every Kembedding of L into itself is necessarily a K-automorphism.

Proof. Since every ring homomorphism is injective, it suffices to show that any K-endomorphism of L is surjective. Let σ be a K-embedding of L. Since σ is a K-embedding, we have that for all $f[X] \in K[X], \sigma(f(X)) = f(X)$. Hence l is a root of f(X) if and only if $\sigma(l)$ is a root of f(X). Consider $l \in L$. We want to show that there exists $l_1 \in L$ such that $\sigma(l_1) = l$. Since L/K is an algebraic extension, there exists a polynomial $f(X) \in K[X]$ of minimal degree such that f(l) = 0. Let $\{l_1, \ldots, l_r\}$ be all the roots of the polynomial f(X) in L. Then σ induces an injective map from $\{l_1, \ldots, l_r\}$ to itself. Since this is a finite set, the induced map must also be surjective. Hence l must be in the image of σ .

Definition 5.7. Let L/K be a field extension. We write $Aut_{\mathbf{K}}(\mathbf{L})$ for the group of K-automorphisms of L.

Theorem 5.8. (Artin's Extension Theorem)

Let K_1 and K_2 be two fields, $\sigma : K_1 \to K_2$ a field isomorphism and $f \in K_1[X]$ an irreducible polynomial. Furthermore, let α be a root of f(X) in an extension L_1 of K_1 and β a root of $\overline{\sigma}(f(X))$ in an extension L_2 of K_2 . Then there exists a unique isomorphism of fields

$$\tau: K_1(\alpha) \to K_2(\beta)$$

such that $\tau(\alpha) = \beta$ and $\tau|_{K_1} = \sigma$. This is shown by the following diagram

$$\begin{array}{cccc}
L_1 & L_2 \\
\mid & \mid \\
K_1(\alpha) & \xrightarrow{\tau} & K_2(\beta) \\
\mid & \mid \\
K_1 & \xrightarrow{\sigma} & K_2
\end{array}$$

Proof. We note that $\overline{\sigma}$ induces an isomorphism, which we again denote by $\overline{\sigma}$:

$$\overline{\sigma}: K_1[X]/(f(X)) \to K_2[X]/(\overline{\sigma}(f(X)))$$

Then the proposition follows directly from Proposition 4.5 and the following diagram

$$L_{1} \qquad L_{2}$$

$$| \qquad |$$

$$K_{1}(\alpha) \xrightarrow{\sim} K_{1}[X]/(f) \xrightarrow{\overline{\sigma}} K_{2}[X]/(\overline{\sigma}(f)) \xrightarrow{\sim} K_{2}(\beta)$$

$$| \qquad |$$

$$K_{1} \xrightarrow{\sigma} K_{2}(f) \xrightarrow{\sigma} K_{2}(f)$$

Corollary 5.9. Let K_1 and K_2 be two fields and $\sigma : K_1 \to K_2$ an isomorphism of fields. Consider a polynomial $f \in K_1[X]$ and choose splitting fields L_1 for f over K_1 and L_2 for $\overline{\sigma}(f)$ over K_2 . Then there exists an isomorphism

$$\tau: L_1 \to L_2$$

such that $\tau_{K_1} = \sigma$. In particular, if $K_1 = K_2 = K$ and $\sigma = id_K$, we have that any two splitting fields for f over K are K-isomorphic.

Proof. We prove the corollary by induction on $\deg(f)$. If $\deg(f) = 1$ then $L_1 = K_1$ and $L_2 = K_2$ and there is nothing to prove. Now assume that the corollary is true for $\deg(f) < n$.

Let f be a polynomial of degree n. If f is reducible then take an irreducible factor p of f in $K_1[X]$. Then $\overline{\sigma}(p)$ is an irreducible factor of $\overline{\sigma}(f)$ in $K_2[X]$. Now let $M_1 \subseteq L_1$ be the splitting field of p and $M_2 \subseteq$ the splitting field of $\overline{\sigma}(p)$. Then by the induction hypothesis, there is an isomorphism

$$\tau': M_1 \to M_2$$

such that $\tau'|_{K_1} = \sigma$. Next we can apply the induction hypothesis to M_1, M_2 and τ' to get an isomorphism

$$\tau: L_1 \to L_2$$

such that $\tau|_{M_1} = \tau' \implies \tau|_{K_1} = \sigma$.

Now we consider the case where f is irreducible. Let α be a root of f in L_1 and β a root of $\overline{\sigma}(f)$ in L_2 . Then by Artin's Extension Theorem, we have that there is an isomorphism

$$\tau': K_1(\alpha) \to K_2(\beta)$$

such that $\tau'|_{K_1} = \sigma$. Over the field $K_1(\alpha)$, the polynomial f is reducible and hence we are done by the previous case.

Theorem 5.10. Let $\sigma : K_1 \to K_2$ be a field embedding and let L_1/K_1 be a finite extension. Then for any given extension M/K_2 there are at most $[L_1 : K_1]$ distinct embeddings

$$\tau: L_1 \to M$$

such that $\tau|_{K_1} = \sigma$

Proof. We prove the theorem by induction. Let $L_1 = K_1(\alpha_1, \ldots, \alpha_r)$ for some $\alpha_1, \ldots, \alpha_r \in L_1$. We first prove the result for $K_1(\alpha_1)/K_1$. Let $f_1(X) \in K_1[X]$ be the minimal polynomial of α_1 over K_1 . Let $\overline{\sigma}(f_1) = f_2(X) \in K_2[X]$. If f_2 has no roots in M then there is no embedding of $K_1(\alpha_1)$ in M. More generally, if $\{\beta_1, \ldots, \beta_m\}$ are the roots of f_2 in M, then there are m embeddings τ_1, \ldots, τ_m

$$\tau_i: K_1(\alpha_1) \to M$$

such that $\tau_i|_{K_1} = \sigma$ and $\tau_i(a_1) = \beta_i$. Moreover, these are all the embeddings since α_1 has to map to a root of f_2 and the image of α_1 determines τ . Since $m \leq \deg(f_1) = [K_1(\alpha_1) : K_1]$, the theorem is true for $K_1(\alpha_1)/K_1$.

Now assume that the theorem is true for $K_1(\alpha_1, \ldots, \alpha_s)/K_1$ for some $1 \leq s < r$. Let $L_0 = K_1(\alpha_1, \ldots, \alpha_s)$ and fix an embedding $\tau : L_0 \to M$ such that $\tau|_{K_1} = \sigma$. Then by what we have just proven, we have that the number of embeddings

$$\tau': L_0(\alpha_{s+1}) \to M$$

such that $\tau'|_{L_0} = \tau$ is less than or equal to $[L_0(\alpha_{s+1}) : L_0]$. Hence the number of embeddings

$$\tau: L_0(\alpha_{s+1}) \to M$$

such that $\tau|_{K_1} = \sigma$ is less than or equal to $[L_0(\alpha_{s+1}) : L_0][L_0 : K_1] = [L_0(\alpha_{s+1}) : K_1)].$

Chapter 6

Separable Extensions

Definition 6.1. Let $f(X) \in K[X]$ be a polynomial. We say that f(X) is separable if it has $\deg(f(X))$ distinct roots in every splitting field over K. If L/K is a field extension, we say that an element $l \in L$ is separable over K if it is algebraic over K and its minimal polynomial p(X) is separable. We say that an extension L/K is separable if it is algebraic and every element of L is separable over K.

Definition 6.2. Let $f(X) = c_n X^n + \cdots + c_0$ be a polynomial. We define its *derivative* f'(X) to be

$$f'(X) = nc_n X^{n-1} + (n-1)c_{n-1} X^{n-2} + \dots + c_1$$

Lemma 6.3. Consider a field K, an element $a \in K$ and a polynomial $p(X) \in K[X]$. Then a is a multiple root of p(X) if and only if p(a) = 0 and p'(a) = 0. Proof.

 \implies : Let a be a multiple root of p(X). Then $p(X) = (X - a)^n f(X)$ for some $f(X) \in K[X]$ and $n \ge 2$. Obviously, p(a) = 0. Now, by the product rule and chain rule, we see that $p'(X) = n(X - a)^n f(X)$.

Now, by the product rule and chain rule, we see that $p'(X) = n(X - a)^{n-1}f(X) + (X - a)^n f'(X)$. Hence p'(a) = 0.

 \Leftarrow : Now assume that p(a) = 0 and p'(a) = 0 and assume that the *a* is not a multiple root of p(X). Then we have that p(X) = (X - a)f(X) for some $f(X) \in K[X]$ where *a* is not a root of f(X). By the product rule, we have that p'(X) = f(X) + (X - a)f'(X). Now, p'(a) = f(a). But *a* is not a root of f(X) hence $f(X) \neq 0$ which is a contradiction to the assumption that p'(a) = 0. Hence *a* must be a multiple root of p(X).

Definition 6.4. Let K be a field. We say that K is **perfect** if either char(K) = 0 or char(K) = p for some prime p and the map

$$\sigma: K \to K$$
$$x \mapsto x^p$$

is an isomorphism.

Example 6.5. $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a perfect field.

Example 6.6. Let $\mathbb{F}_p(t)$ be the field of fractions of the polynomial ring $\mathbb{F}_p[t]$. Then $\mathbb{F}_p(t)$ is not a perfect field.

Proposition 6.7. Let K be a perfect field and L/K a field extension. If $l \in L$ is algebraic over K then all the roots of the minimal polynomial of l over K are simple.

Proof. Let $f(X) \in K[X]$ be the minimal polynomial of l over K. Then f(X) is irreducible over K. We also note that $\deg(f) > \deg(f')$. Now let a be a root of f. By the previous lemma, we have that a is a multiple root if and only if f'(a) = 0. Since f is irreducible over K, f must also be the minimal polynomial of a over K. If f'(a) = 0, then f(X)|f'(X). But as $\deg(f) > \deg(f')$, we must have that f'(X) = 0. This is not possible in a characteristic 0 field. Hence if $char(K) = 0, f'(a) \neq 0$ and all roots of f are simple roots.

If char(K) = p and f'(a) = 0 then f'(X) = 0. In this case, we can see that $f(X) = h(X^p)$ for some $h(X) \in K[X]$. Let $h(X) = a_n X^n + \cdots + a_0$. Since K is a perfect field of characteristic p there exists $b_i \in K$ such that $a_i = b_i^p$ for all $0 \le i \le n$. Hence

$$f(X) = h(X^p) = a_n X^{np} + \dots + a_0$$
$$= b_n^p X^{np} + \dots + b_0^p$$
$$= (b_n X^n + \dots + b_0)^p$$

But this cannot happen since f(X) is irreducible. Hence $f'(a) \neq 0$ and all the roots of f are simple roots.

Corollary 6.8. Every algebraic extension of a perfect field is separable.

Proof. Let L/K be an algebraic extension and K a perfect field. Then every $l \in L$ is algebraic over K. By the previous proposition, we have that the minimal polynomial of l over K has no repeated roots. Hence every element of L is separable over K and L/K is a separable extension.

Theorem 6.9. Let $L = K(\alpha_1, \ldots, \alpha_n)$ be a finite extension of K. Let f_i be the minimal polynomial of α_i over K. Let $\sigma : K \to K_1$ be an isomorphism of fields and M an extension of K_1 . Assume that $\overline{\sigma}(f_i)$ splits completely in M for every $1 \le i \le n$. Then L/K is separable if and only if the number of embeddings $\tau : L \to M$ such that $\tau|_K = \sigma$ is equal to [L : K].

Proof.

 \implies : Assume that L/K is separable. By Theorem 5.10, we know that the number of embeddings τ such that $\tau|_K = \sigma$ is less than or equal to [L:K]. We must show equality. We first show the result for $K(\alpha_1)/K$. As L/K is separable, the minimal polynomial f_1 of α_1 has simple roots. Hence $\overline{\sigma}(f_1)$, which we denote by g_1 , has simple roots in M. Let $\{\beta_1, \ldots, \beta_m\}$ be the roots of g_1 in M. Then $r = deg(g_1) = deg(f_1)$. For every $1 \leq j \leq r$, there is an embedding

$$\tau_j = K(\alpha_1) \to M$$

such that $\tau_j|_K = \sigma$ and $\tau_j(\alpha_1) = \beta_i$. Moreover, $\tau_j \neq \tau'_j$ if $j \neq j'$. Hence we have $[K(\alpha_1) : K] = \deg(f_1) = r$ embeddings of $K(\alpha_1)$ in M whose restriction to K is σ .

Now assume that the result is true for $K(\alpha_1, \ldots, \alpha_s)/K$ for some $1 \leq s < n$. Denote $L_0 = K(\alpha_1, \ldots, \alpha_n)$. Now fix an embedding $\tau : L_0 \to M$ such that $\tau|_K = \sigma$. Let p(X) be the minimal polynomial of α_{s+1} over L_0 . Then $p(X)|f_{s+1}(X)$. Since $f_{s+1}(X)$ has simple roots, p(X) must also have simple roots. Hence $\overline{\tau}(p)$ must have simple roots. As all the roots of $\overline{\tau}(f_{s+1}) = \overline{\sigma}(f_{s+1})$ are in M, all the roots of $\overline{\tau}(p)$ are also in M. Hence by the first part, the number of embeddings $\tau' : L_0(\alpha_{s+1}) \to M$ such that $\tau'|_{L_0} = \tau$ is equal to $[L_0(\alpha_{s+1}) : L_0] = deg(p)$. Hence the number of embeddings $\tau' : L_0 \to M$ such that $\tau'|_K = \sigma$ is equal to $[L_0(\alpha_{s+1}) : L_0][L_0 : K] = [L_0(\alpha_{s+1}) : K]$.

 \Leftarrow : Now assume that the number of embeddings $\tau : L \to M$ such that $\tau|_K = \sigma$ is equal to [L:K]. We want to show that L/K is separable. Consider $l \in L$ and let $f(X) \in K[X]$ be the minimal polynomial of l over K. Let $g = \overline{\sigma}(f) \in M[X]$. f has simple roots if and only if g has simple roots. By Theorem 5.10, the number of embeddings

$$\tau': K(l) \to M$$

such that $\tau'|_K = \sigma$ is less than or equal to [K(l) : K]. Once we fix such a τ' and apply Theorem 5.10 again, we get that the number of embeddings

$$\tau:L\to M$$

such that $\tau|_{K(l)} = \tau'$ is less than or equal to [L:K(l)]. Hence the number of

$$\tau: L \to M$$

such that $\tau|_K = \sigma$ is less than or equal to [L : K(l)][K(l) : K] = [L : K]. But by hypithesis, this number is equal to [L : K]. Hence the number of τ 's as above should be equal to $[K(l) : K] = \deg(f) = \deg(g)$. As each map τ' maps l to a root of g and different τ 's maps l to distinct roots of g, we have that g has $\deg(g)$ distinct roots in M. Hence all the roots of g are simple which implies that all the roots of f are simple and hence l is separable over K.

Corollary 6.10. Let L/K be a field extension and $l \in L$ separable over K. Then K(l)/K is a separable extension.

Corollary 6.11. Let L/K be a field extension. Then

 $M = \{l \in L \mid l \text{ is separable over } K \}$

is a field.

Proposition 6.12. Let $K \subseteq L \subseteq M$ be fields. Then L/K and M/L are separable if and only if M/K is separable.

Proof. \Longrightarrow : Assume that L/K and M/L are separable. Let $m \in M$. We want to show that m is separable over K. Let $p(X) = \sum_{i=0}^{n} l_i X^i \in L[X]$ be the minimal polynomial of m over L. Let $L_0 = K(l_1, \ldots, l_n)$. Then L_0/K is a separable finite extension. Let $M_0 = L_0(m)$. The minimal polynomial of m over L_0 is p(X). Hence M_0/L_0 is a separable finite extension. Let E be

an extension of K which contains all the conjugates of each l_i and m. Then by Theorem 6.9, the number of embeddings

$$\tau: L_0 \to E$$

such that $\tau|_K = id_K$ is equal to $[L_0: K]$. Once we fix such an embedding τ , the number of embeddings

$$\tau': M_0 \to E$$

such that $\tau'|_{L_0} = \tau$ is equal to $[M_0: L_0]$. Hence the number of embeddings

$$\tau': M_0 \to E$$

such that $\tau'_K = id_K$ is equal to $[M_0 : L_0][L_0 : K] = [M_0 : K]$. Hence by Theorem 6.9, we have that M_0/K is separable.

 \Leftarrow : Let M/K be separable. We want to show that L/K and M/L are separable. Since every $l \in L$ is also an element of M, l is separable over K by assumption, hence L/K is separable. Now since every $m \in L$ is separable over K, it must also be separable over L.

Chapter 7

Algebraic Closure and Primitive Element Theorem

Definition 7.1. A field K is called **algebraically closed** if every polynomial $f(X) \in K[X]$ of degree greater than or equal to 1 has a root in K.

Definition 7.2. Let L/K be a field extension. If L is algebraic over K and is algebraically closed, we say that L is an **algebraic closure** of K. An algebraic closure of K is denoted by \overline{K} .

Proposition 7.3. Let K be a field. Then there exists a field extension E/K such that E is algebraically closed.

Proof. Let $S = \{f \in K[X] \mid f \text{ is irreducible over } K\}$. Let X_f be an indeterminant indexed by $f \in S$. Denote $K[S] = K[X_f : f \in S]$ the polynomial ring with infinitely many variables. Now let I be an ideal of K[S] generated by each $f(X_f)$. We claim that I is not the whole ring. Suppose that I is the whole ring. Then $1 \in I$. We therefore have that

$$1 = \sum_{i=1}^{n} g_i f_i(X_{f_i})$$

Rename, for efficiency, X_{f_i} to X_i and assume that only X_1, \ldots, X_n appear in the equation. Now let L be a splitting field of $f_1(X_1), \ldots, f_n(X_n)$ and $\alpha_i \in L$ a root of $f_i(X_i)$. Setting $X_i = \alpha_i$ in the equation above, we see that 1 = 0, an obvious contradiction. Hence I cannot equal the whole ring.

Now consider \mathfrak{m} a maximal ideal of K[S] containing I. Let $E_1 = K[S]/\mathfrak{m}$.

Then E_1 is an extension of K and it contains all roots of any non-constant polynomial in K[X]. We can apply the same process to E_1 to obtain an extension E_2/E_1 wich contains all roots of any non-constant polynomial in $E_1[X]$ and so on. We get a sequence of fields

$$K \subseteq E_1 \subseteq E_2 \subseteq \ldots$$

Letting $E = \bigcup_{i \ge 1} E_i$, we see that E has the structure of a field. Consider any non-constant polynomial $f(X) \in E[X]$. Then $f(X) \in E_n[X]$ for some n. Hence f(X) has a root in $E_{n+1} \subseteq E$. Thus, E is algebraically closed. \Box

Theorem 7.4. Let K be a field. Then the algebraic closure \overline{K} of K exists.

Proof. Let E/K be the extension constructed in the previous proposition and let $\overline{K} = \{a \in E \mid a \text{ is algebraic over } K\}$. Then \overline{K}/K is algebraic. Let $a \in E$ be algebraic over \overline{K} and $f(X) = \min_{a,\overline{K}}(X)$. Let L be a finite extension of K containing f(X) (for example, take L to be the field generated by the coefficients of f). Then a is algebraic over L. Hence L(a) is a finite extension of L and therefore a finite extension of K. Hence a is algebraic over K i.e $a \in \overline{K}$. Therefore, \overline{K} is algebraically closed. \Box

Definition 7.5. Let L/K be a finite extension. Then L/K is called a **simple** extension if $L = K(\alpha)$ for some $\alpha \in L$. In this case, we say that α is a primitive element.

Proposition 7.6. Let L/K be a finite extension. Then L is simple if and only if there are only finitely many fields F_i such that $K \subseteq F_1 \subseteq \cdots \subseteq F_n \subseteq L$ for some $n \in \mathbb{N}$.

Proof. If K is a finite field then since L/K is a finite extension, we see that L is also finite. But then it is obvious that there are only finitely many fields between K and L.

Now since L is finite, it follows that L^{\times} is a finite abelian group. Let m be the lowest common multiple of all elements in L^{\times} . Then $l^m = 1$ for all $l \in L^{\times}$. Hence all elements of L^{\times} are roots of the polynomial $X^m - 1$. This polynomial can have at most m roots hence $m \ge |L^{\times}|$. Now consider the subgroup of L^{\times} generated by some element of order m. By Lagrange's theorem, we have that m divides $|L^{\times}|$. Hence m = n. This implies that L^{\times} is cyclic. Therefore L is generated by a single element which is exactly what it means for L to be simple.

We now assume that K is an infinite field.

 \implies : Assume that L is simple i.e $L = K(\alpha)$. Let f(X) be the minimal polynomial of α over K. Now let $K \subseteq F \subseteq L$ and g(X) be the minimal polynomial of α over F. Then g(X)|f(X). Let F_0 be the subfield of Fgenerated over K by the coefficients of g(X). Then $L = K(\alpha) = F(\alpha) =$ $F_0(\alpha)$ and g(X) is irreducible over F_0 . Therefore we have that g(X) = $min_{\alpha,F_0}(X)$. Hence $[L : F_0] = [L : F] = \deg(g(X))$ which implies that $F = F_0$. We therefore have an injective map between the subfields of Lcontaining K into the set of monic divisors of f(X). Since the latter set is finite, we have that the former set is also finite.

 \Leftarrow : Now suppose that there are only finitely many fields between L and K. We want to show that given any a, b in L, there exists a $\alpha \in L$ such that $K(a, b) = K(\alpha)$. We shall show this by induction.

Assume that L = K(a, b) and consider all fields of the form K(a + cb) for all $c \in K$. Since there are infinitely many elements of L and only finitely many intermediate fields, there must exist distinct elements $c, c' \in K$ such that K(a + cb) = K(a + c'b). Let $\alpha_1 = a + cb$ and $\alpha_2 = a + c'b$. Then $K(\alpha_1) = K(\alpha_2)$ so $\alpha_2 \in K(\alpha_1)$. Hence $\alpha_1 - \alpha_2 = (c - c')b \in K(\alpha_1)$. Therefore $b \in K(\alpha_1)$ and $\alpha_1 - cb = \alpha \in K(\alpha_1)$. Thus, L = K(a + cb).

Now assume that the proposition is true for extensions $L = K(a_1, \ldots, a_n)$. Consider $L = K(a_1, \ldots, a_{n+1})$ Then $L = K(a_1, \ldots, a_{n+1}) = K(a_1, \ldots, a_n)(a_{n+1})$. By the induction hypothesis, we can show that there is an $a \in K(a_1, \ldots, a_n)$ such that $K(a_1, \ldots, a_n) = K(a)$. Hence we have that $L = K(a)(a_{n+1}) = K(a, a_{n+1})$. By the basis case, we can find a $b \in K(a, a_{n+1})$ such that $K(a, a_{n+1}) = K(b)$. hence L = K(b) and L is a simple extension.

Theorem 7.7. (Primitive Element Theorem) Let L/K be a finite separable extension. Then L is a simple extension of K.

Proof. If K is finite then, from the previous proposition, we have that L/K is simple and we are done. Hence assume that K is infinite. It suffices to consider the case when L = K(a, b) and the generalisation will follow from induction.

Let n = [L : K]. Then since L/K is a separable extension, we have that there exists n distinct K-embeddings of L into \overline{K} . Now suppose that there exists $c \in L$ such that L = (a + cb). Then a + cb must have n distinct conjugates which are exactly the images of a + cb under the action of the n K-embeddings of L. We denote these embeddings by $\sigma_1, \ldots, \sigma_n$. These embeddings map a + cb to the roots of the polynomial $p(x) = min_{a+cb,K}(X)$ in \overline{K} . Hence a + cb is a primitive element if and only if there exists n Kembeddings of L such that $\sigma_i(a + cb) \neq \sigma_j(a + cb)$ for all $i \neq j$. This is equivalent to saying that

$$\prod_{i\neq j}^{n} (\sigma_i(a) - \sigma_j(a) - c(\sigma_i(b) - \sigma_j(b)) \neq 0$$

Now this is equivalent to saying that c is not a root of the following polynomial

$$f(X) = \prod_{i \neq j}^{n} (\sigma_i(a) - \sigma_j(a) - X(\sigma_i(b) - \sigma_j(b))$$

Since K is infinite and f(X) has finitely man roots, we can easily find such a c. Hence a + cb is a primitive element and thus L = (a + cb).

Normal Extensions

Definition 8.1. Let L/K be a field extension. Then L/K is called **normal** if it is algebraic and for every $l \in L$, the minimal polynomial of l over K splits completely over L.

Example 8.2. $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is normal.

Proposition 8.3. Let K be a field and $f(X) \in K[X]$. Then a splitting field of f is a normal extension of K.

Proof. Let L be a splitting field of f and $\alpha_1, \ldots, \alpha_r$ the roots of f. Hence $L = K(\alpha_1, \ldots, \alpha_r)$. Let $l \in L$ and p(X) be the minimal polynomial of l over K. Let M be a splitting field of p(X) over L. Let $l' \in M$ be a root of p(X). We must show that $l' \in L$. There is a unique isomorphism

$$\tau: K(l) \to K(l')$$

such that $\tau(l) = l'$ and $\tau|_K = id_K$. By Artin's Extension Theorem, we may extend τ to $\tau' : L \to M$ such that $\tau'|_{K(l)} = \tau$. We can find such an extension as follows.

Assume that we have an extension $\tau' : K(l, \alpha_1, \ldots, \alpha_n) \to M$ for some $1 \leq s < r$. Let g(X) be the minimal polynomial of α_{s+1} over $K(l, \alpha_1, \ldots, \alpha_s)$. Then g(X)|f(X) and hence $\overline{\tau}'(g)|\overline{\tau}'(f) = f$. Since f splits completely in L, so does $\overline{\tau}(g)$. Let α'_{s+1} be a root of $\overline{\tau}(g)$ in M. Then there is an extension

$$\tau'': K(l, \alpha_1, \ldots, \alpha_{s+1}) \to M$$

such that $\tau''|_{K(l,\alpha_1,\ldots,\alpha_{s+1})} = \tau'$ and $\tau''(\alpha_{s+1}) = \alpha'_{s+1}$. We therefore have an embedding $\tau' : L \to M$ such that $\tau'|_K = id_K$ and $\tau'(l) = l'$. We now claim that $\tau'(L) = L$. Noote that τ' is determined by where it sends α_i 's. $\tau'(\alpha_i)$ must be a root of $\overline{\tau}'(f) = f$. Hence $\tau'(\alpha_i) \in$ $\{\alpha_1, \ldots, \alpha_r\}$ for each *i*. Hence $\tau'(L) \subseteq L$ and by Proposition 5.6 $\tau'(L) = L$. Hence $l' \in L$ and p(X) splits completely in L. \Box

Theorem 8.4. Let L/K be an algebraic extension. Then L/K is normal if and only if for any extension M of L and for any K-embedding, $\tau : L \to M$ maps L to itself.

Proof.

 \implies : Assume that L/K is normal and let $\tau : L \to M$ be an embedding. Let $l \in L$ and $f(X) \in K[X]$ be the minimal polynomial of l over K. Then L contains all the roots of f(X). Also note that $\tau(l)$ is a root of $\overline{\tau}(f) = f$. Hence $\tau(l) \in L$. Now by Proposition 5.6, $\tau(L) = L$.

 \Leftarrow : Assume that for any extension M of L and any K-embedding, $\tau: L \to M$ maps L to itself. We take M to be an algebraic closure of K. Let l in L and $f(X) \in K[X]$ be the minimal polynomial of l over K. We must show that f(X) splits completely in L. Let $l' \in \overline{K}$ be a root of f(X). Then by Artin's Extension Theorem, there is a unique ismorphism $\tau: K(l) \to K(l')$ such that $\tau|_K = id_K$ and $\tau(l) = l'$. We claim that we can extend τ to an embedding $\tau': L \to M$. Let E be the maximal subfield of Lcontaining K(l) such that τ can be extended to an embedding $\tau': E \to \overline{K}$. If $E \neq L$, take $\alpha \in L - E$ and let p(X) be the minimal polynomial of α over K. Then p(X) splits completely in \overline{K} . Let g(X) be the minimal polynomial of α over E. Then $\overline{\tau}'(g)$ splits completely in \overline{K} . Let $\alpha' \in \overline{K}$ be a root in $\overline{\tau}'(g)$. Then by Artin's Extension Theorem, we get

$$\tau'': E(\alpha) \to \tau'(E)(\alpha') \subseteq \overline{K}$$

such that $\tau''|_E = \tau'$ i.e we get an extension of τ to $E(\alpha)$. By maximality of E, $\alpha \in E$ which is a contradiction. Hence E = L. As $\tau(L) = L$ by hypothesis, we get $\tau(l) = l' \in L$.

Proposition 8.5. Let $K \subseteq L \subseteq M$ be fields. If M/K is normal then so is M/L. Let $f(X) \in L[X]$ be an irreducible polynomial with a root $l \in M$. Let $g(X) \in K[X]$ be the minimal polynomial of l over K. Then f(X)|g(X). As M/K is normal, g splits completely in M[X]. Hence f(X) splits completely in M[X]/

Galois Extensions

Definition 9.1. A field extension L/K is called **Galois** if it is normal and separable. The group $Aut_K(L)$ of K-automorphisms of L is called the **Galois** group of L/K and is denoted by Gal(L/K).

Proposition 9.2. Let $K \subseteq L \subseteq M$ be fields. If M/K is a Galois extension then so is M/L.

Definition 9.3. Let L/K be an extension and let H a subgroup of Gal(L/K). Then the **fixed field** of H in L is defined to be

$$L^H := \{l \in L \mid h(l) = l \ \forall h \in H\}$$

Remark. Clearly, L^H is an intermediate extension of L/K and L/L^H is a galois extension.

Fundamental Theorem of Galois Theory

Lemma 10.1. (Zorn's Lemma)

Let S be a non-empty partially ordered set. Assume that every chain in S has an upper bound i.e if $s_1 \leq s_2 \leq \ldots$ is a chain in S then there exists $s \in S$ such that $s_i \leq s$ for all i. Then S has a maximal element, say s, such that there is no $s' \in S$ with s < s'.

Proposition 10.2. Let L/K be a normal extension. Let $K \subseteq M \subseteq L$ be an intermediate extension. Then any K-embedding $\tau : M \to L$ can be extended to a K-automorphism of L.

Proof. Assume that E is the maximal extension of M contained in L such that τ extends to an embedding of $\tau' : E \to L$. The existence of such an extension is guaranteed by Zorn's Lemma as follows.

Let S be the set of all pairs (E, τ') such that $M \subseteq E \subseteq L$ is an intermediate extension and $\tau' : E \to L$ is an embedding such that $\tau'|_M = \tau$. Then S is non-empty because $(M, \tau) \in S$. The partial ordering on S is given as follows

$$(E_1, \tau_1') \le (E_2, \tau_2')$$

if

$$E_1 \subseteq E_2, \ \tau'_2|_{E_1} = \tau'_1$$

Let $\{(E_i, \tau'_i)\}$ be a chain in S. Let $E = \bigcup_i E_i$. There is an embedding $\tau': E \to L$, defined as $\tau'(e) = \tau'_i(e)$ if $e \in E_i$. With this definition, (E, τ') is

an upper bound of the chain. Hence S has a maximal element.

We now claim that E = L. Let $\alpha \in L$ and consider $E(\alpha)$. Let $p(X) \in K[X]$ be the minimal polynomial of α in K and let $f(X) \in E[X]$ be the minimal polynomial of α over E. Since L/K is normal, L/E is also normal and hence both p(X) and f(X) split completely over L. We note that $\overline{\tau}'(f)|p(X)$ and hence $\overline{\tau}'(f)$ splits completely in L. Let $\alpha' \in L$ be any root of $\overline{\tau}'(f)$. By Artin's Extension Theorem, τ' extends to an isomorphism

$$\tau'': E(\alpha) \to \tau'(E)(\alpha') \subseteq L$$

As $\tau''|_M = \tau'|_M = \tau$, by maximality of $E, E = E(\alpha)$. Hence $\alpha \in L$. Since α was an arbitrary element of $L, L \subseteq E$. Hence L = E and we are done. \Box

Proposition 10.3. Let L be a field and G the group of automorphisms of L. Consider the fixed field $K = L^G$. Then L/K is Galois with Gal(L/K) = Gand thus [L:K] = |G|

Proof. Let $\alpha \in L$. We find a separable polynomial in K[X] with α as one of its roots. Let $\{\sigma_1, \ldots, \sigma_r\}$ be a maximal set of elements of G such that $\sigma_1(\alpha), \ldots, \sigma_r(\alpha)$ are all distinct. Then for any $\tau \in G$

$$(\tau \sigma_1(\alpha), \ldots, \tau \sigma_r(\alpha))$$

is a permutation of

$$(\sigma_1(\alpha),\ldots,\sigma_r(\alpha))$$

Indeed, if it is not a permutation then the maximality of $\{\sigma_1, \ldots, \sigma_r\}$ is contradicted.

Now consider the polynomial

$$f(X) = \prod_{i=1}^{r} (X - \sigma_i(\alpha))$$

It is obviously separable as each $\sigma_i(\alpha)$ is distinct and has α as a root since G is a group and hence one of the σ_i must be the identity mapping. We can also see that given any $\tau \in G, \overline{\tau}(f) = f$. Therefore $f(X) \in K[X]$. Hence every $\alpha \in L$ is a root of a separable polynomial of degree less than or equal to |G| over K meaning that L is separable. Moreover, these polynomials obviously split completely over L and hence L is a normal extension. Therefore, L/K

is a Galois extension.

We now show that [L:K] = |G|. Let n = |G| and $G = \{\sigma_1, \ldots, \sigma_r\}$. Assume that $\{l_1, \ldots, l_{n+1}\} \subseteq L$ is linearly independent over K. Now consider the system of equations

$$\sigma_{1}(l_{1})X_{1} + \dots + \sigma_{1}(l_{n+1})X_{n+1} = 0$$

$$\vdots$$

$$\sigma_{n}(l_{1})X_{1} + \dots + \sigma_{n}(l_{n+1})X_{n+1} = 0$$
(10.1)

Assume that $\vec{\alpha} = (\alpha_1, \ldots, \alpha_r, 0, \ldots, 0)$ is a solution of these equations with minimal r and fix $\sigma \in G$. $(\sigma\sigma_1, \ldots, \sigma\sigma_n)$ is just a permutation of $(\sigma_1, \ldots, \sigma_n)$. Therefore the system of equations

$$\sigma\sigma_1(l_1)\sigma(\alpha_1) + \dots + \sigma\sigma_1(l_r)\sigma(\sigma_r) = 0$$

$$\vdots$$

$$\sigma\sigma_n(l_1)\sigma(\alpha_1) + \dots + \sigma\sigma_n(l_r)\sigma(\alpha_r) = 0$$

can be written, up to permutation of the equations, as

$$\sigma_1(l_1)\sigma(\alpha_1) + \dots + \sigma_1(l_r)\sigma(\sigma_r) = 0$$

$$\vdots$$

$$\sigma_n(l_1)\sigma(\alpha_1) + \dots + \sigma_n(l_r)\sigma(\alpha_r) = 0$$
(10.2)

Let $(10.1)(\vec{\alpha})$ denote the equations in (10.1) evaluated at $\vec{\alpha}$ then taking $\alpha_r(10.2) - \sigma(\alpha_r)(1)(\vec{\alpha})$

$$\sigma_1(l_1)(\alpha_r\sigma(\alpha_1) - \alpha_1\sigma(\alpha_r)) + \dots + \sigma_1(l_{r-1})(\alpha_r\sigma(\alpha_{r-1}) - \alpha_{r-1}\sigma(\alpha_r)) = 0$$

$$\vdots$$

$$\sigma_n(l_1)(\alpha_r\sigma(\alpha_1) - \alpha_1\sigma(\alpha_r)) + \dots + \sigma_n(l_{r-1})(\alpha_r\sigma(\alpha_{r-1}) - \alpha_{r-1}\sigma(\alpha_r)) = 0$$

This is a solution of (10.1) with fewer non-zero terms. Therefore, all the terms must be zero. We thus have that $\alpha_r \sigma(\alpha_i) = \alpha_i \sigma(\alpha_r)$ for all $i \leq r - 1$. This is equivalent to having $\sigma(\alpha_i \alpha_r^{-1}) = \alpha_i \alpha_r^{-1}$ for all $i \leq r - 1$.

Now since σ is an arbitrary K-automorphism in G, we must have that $m_i := \alpha_i \alpha_r^{-1} \in K$ for all $i \leq r - 1$. Hence $\alpha_i = m_i \alpha_r$ for all $i \leq r$. Then equation

(10.1), evaluated at $\vec{\alpha}$ gives

$$0 = \sigma_1(l_1)\alpha_1 + \dots + \sigma_1(l_r)\alpha_r$$

= $(\sigma(l_1)m_1 + \dots + \sigma_1(l_r)m_r)\alpha_r$
= $\sigma_1(l_1m_1 + \dots + l_rm_r)\alpha_r$

Since α_r is not 0 by construction, we must have that $\sigma_1(l_1m_1 + \cdots + l_rm_r) = 0$. Now since σ is an isomorphism, its kernel is trivial hence $l_1m_1 + \cdots + l_rm_r = 0$. But this is a contradiction to the assumption that $\{l_1, \ldots, l_r\}$ are linearly independent over K. Hence $[L:K] \leq n$.

Now Theorem 5.10 implies that $[L : K] \ge n$. Thus we must have that [L : K] = n.

Theorem 10.4. (Fundamental Theorem of Galois Theory for Finite Extensions)

Let L/K be a finite Galois extension, H a subgroup of Gal(L/K) and E and intermediate field of L/K. Then

1. the maps

$$H \mapsto L^H$$
$$E \mapsto Gal(L/E)$$

are mutually inverse, inclusion reversing bijections between the subgroups of Gal(L/K) and the intermediate fields of L/K.

2. L^H/K is Galois if and only if H is a normal subgroup of Gal(L/K). In this case, the restriction map

$$Gal(L/K) \to Gal(L^H/K)$$

 $\sigma \mapsto \sigma|_{L^H}$

induces an isomorphism of groups $Gal(L/K)/H \rightarrow Gal(L^H/K)$.

Proof. Part 1: We first show that the mappings are inclusion reversing. Let $K \subseteq F_1 \subseteq F_2 \subseteq L$ and $G_i = Gal(L/F_i)$. If $\sigma \in G_2$ then σ fixes F_2 . Since $F_1 \subseteq F_2$, we have that σ fixes F_1 and hence $\sigma \in G_1$. Now let $H_1 \subseteq H_2 \subseteq Gal(L/K)$ and $F_i = L^{H_i}$. If $x \in F_2$ then $\sigma(x) = x$ for all $\sigma \in H_2$. Since $H_1 \subseteq$, we have that $\sigma(x) = x$ for all $x \in H_1$. Hence $x \in F_1$.

Therefore the maps are inclusion reversing.

We now show that the map $E \mapsto Gal(L/E)$ is injective. Let G = Gal(L/K). We shall first prove that $L^G = K$. It is clear that $K \subseteq L^G$. Let $\alpha \in L^G$ and consider the extension $K(\alpha)/K$. Let $f(X) \in K[X]$ be the minimal polynomial of α over K. Since L is normal, f(X) splits completely in L[X]and since it is also separable, all the roots of f are simple roots. If deg(f) > 1then let $\alpha' \neq \alpha$ be another root of f(X). Then there is a K-isomorphism

$$\tau: K(\alpha) \to K(\alpha')$$

Since L is a normal extension of K containing both $K(\alpha)$ and $K(\alpha')$, this isomorphism τ can be etended to a K-automorphism, say τ' , of L. Hence τ' is an element of G. Since $\alpha \in L^G, \alpha = \tau'(\alpha) = \tau(\alpha)$. But $\tau(\alpha) = \alpha'$ by construction. By assumption, $\alpha \neq \alpha'$ hence this is a contradiction and deg(f) = 1 and $a \in K$. Hence $L^G = K$. Now let E and E' be two intermediate fields of L/K such that H := Gal(L/E) = Gal(L/E') =: H'. By the result we have just shown, we have that $E = L^H = L^{H'} = E'$. Therefore $E \mapsto Gal(L/E)$ is an injective mapping.

We now show that $E \mapsto Gal(L/E)$ is a surjective mapping. We have to prove that for every subgroup of the Galois group of L/K, there exists a fixed field of L/K that maps to it. Let $H \subseteq G$ be a subgroup of the Galois group of L/K. Then by Proposition 10.4, L/L^H is a Galois extension with Galois group H. Hence the mapping $E \mapsto Gal(L/E)$ is surjective.

Part 2:

 \implies : Now assume that L^H/K is a Galois extension. Then the restriction map

$$\phi: Gal(L/K) \to Gal(L^H/K)$$
$$\sigma \mapsto \sigma|_{L^H}$$

induces a group homomorphism.

Since L is a normal extension, any automorphism of L^H can be extended to an automorphism of L. This implies that the map is surjective. Now

$$\ker(\phi) = \{ \sigma \in Gal(L/K) \mid \sigma|_{L^H} = id \}$$

Hence the kernel is comprised of all those automorphisms that, when restricted to L^H are just the identity automorphism. Bu this is exactly H. Since H is the kernel of a group homomorphism on Gal(L/K), H must be a normal subgroup.

 \Leftarrow : Now assume that L^H is not Galois over K. Then there exists an automorphism of L, say σ , such that $\sigma(L^H) \neq L^H$. Indeed, if there did not exist such an automorphism, then Theorem 8.4 would imply that L^H is normal over K and hence Galois.

We claim that $\sigma H \sigma^{-1} \neq H$. To show this, we need to prove that $L^{\sigma H \sigma^{-1}} = \sigma(L^H)$.

Let $Z = \sigma(L^H)$ and $x \in Z$. Then $x = \sigma(y)$ for some $y \in L^H$. Now

$$(\sigma\phi\sigma^{-1})(x) = \sigma\phi(y)$$
$$= \sigma(y)$$
$$= x$$

for all $\phi \in H$. Hence x is also fixed by $\sigma\phi\sigma^{-1}$ and therefore $x \in L^{\sigma H\sigma^{-1}}$. Thus we have that $\sigma(L^H) \subseteq L^{\sigma H\sigma^{-1}}$.

Now let $x \in L^H$. We have that $x = \sigma^{-1}(y)$ for some $y \in Z$. Therefore

$$\begin{aligned} \sigma^{-1}\phi'\sigma)(x) &= \sigma^{-1}\phi'(y) \\ &= \sigma^{-1}(y) \\ &= x \end{aligned}$$

for all ϕ' in H', the Galois group of Z. Therefore $H \subseteq \sigma H' \sigma^{-1}$ and thus $\sigma H \sigma^{-1} \subseteq H'$. It hence follows that $L^{\sigma H \sigma^{-1}} \subseteq L^{H'} = \sigma(L^H)$. We can now see that $\sigma(L^H) = L^{\sigma H \sigma^{-1}}$.

Now assume that H is normal so that $\sigma H \sigma^{-1} = H$. By what we have just proved, this implies that $\sigma(L^H) = L^H$. But this is a contradiction and we hence see that H is not a normal subgroup.

Definition 10.5. Let $f(X) \in K[X]$. We define the **Galois group** of f(X) over K to be

$$Gal(f/K) = Gal(K_f/K)$$

where K_f is a splitting field of f(X) over K.

Definition 10.6. Let r > 0. We denote the group of permutations on r elements by S_r . We say that a subgroup of S_r is **transitive** if it acts transitively on the set of r elements.

Example 10.7. $\{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4), (2, 3)\}$ is a transitive subgroup of S_4 .

Proposition 10.8. Let $f(X) \in K[X]$ be a polynomial with r distinct roots. Then Gal(f/K) is isomorphic to a subgroup of of S_r and hence the order of Gal(f/K) divides r!. Moreover, if f is irreducible over K then Gal(f/K) is a transitive subgroup of S_r .

Proof. Let L be a splitting field of f over K and l_1, \ldots, l_r be roots of f. Then $L = K(l_1, \ldots, l_r)$. A K-automorphism of L is determined by the images of the l_i 's. Such an automorphism must map a root of f to a root. Hence a K-automorphism of L permutes elements of the set l_1, \ldots, l_r . Hence we get an injection of Gal(f/K) into S_r .

Now assume that f is irreducible over K. Then for any $1 \le i \le r$, there is a K-isomorphism

$$K(l_1) \to K(l_i)$$

By Proposition 10.2, this can be extended to an automorphism of L and hence to an element of Gal(f/K). Therefore, Gal(f/K) is a transitive subgroup of S_r .

Cubic Polynomials

Let $f(X) \in K[X]$ be a cubic polynomial. Then Gal(f/K) is a subgroup of S_3 . S_3 has 6 subgroups, namely

- {(1)}
- $\{(1), (1,2)\}$
- $\{(1), (1,3)\}$
- $\{(1), (2,3)\}$
- $\{(1), (1, 2, 3), (1, 3, 2)\}$
- $\{(1), (1,2), (1,3), (2,3), (1,2,3), (1,3,2)\}$

If f(X) splits completely over K then $Gal(f/K) = \{(1)\}$. If f(X) is reducible over K but does not split completely then Gal(f/K) is isomorphic to the cyclic group of order 2.

If $Gal(f/K) \cong S_3$ then by the fundamental theorem of Galois Theory, there exists a field extension M such that $K \subseteq M \subseteq L$ and $Gal(M/K) \cong C_3$. We have that $M = K(\delta)$ where $\delta \in L$. Even permutations of S_3 fix δ and odd permutations send δ to $-\delta$. If $\alpha_1, \alpha_2, \alpha_3$ are the roots of f then

$$\delta = (\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)(\alpha_3 - \alpha_1)$$

If f is irreducible over K then Gal(f/K) is S_3 if and only if $\delta \notin K$.

CHAPTER 11. CUBIC POLYNOMIALS

Definition 11.1. Let $f(X) \in K[X]$ be a cubic polynomial and $\alpha_1, \alpha_2, \alpha_3$ its roots in a splitting field over K. Then we define the **descriminant** D of f as

$$D = \delta^{2} = (\alpha_{1} - \alpha_{2})^{2}(\alpha_{2} - \alpha^{3})(\alpha_{3} - \alpha_{1})^{2}$$

Suppose that $\sqrt{D} \in K$. Then any element of Gal(f/K) must fix \sqrt{D} . But a transposition of two roots does not fix \sqrt{D} . S_3 contains exactly 3 such permutations (namely the cyclic groups of order 2). Therefore $Gal(f/K) \cong$ S_3 if and only if D is not a square in K. If $f(X) = X^3 + aX + b$ then

$$D = -4a^3 - 27b^2$$

If $f(X) = X^3 + a_2 X^2 + a_1 X + a_0$ and $char(K) \neq 3$ then we can eliminate the quadratic term with the change of variable $Y = X - \frac{a_2}{3}$.

Example 11.2. Consider the polynomial $f(X) = X^3 + 2 \in \mathbb{Q}[X]$. By Eisenstein's Criterion, we have that the prime number 2 divies every coefficient except the leading one and $2^2 = 4$ $a_0 = 2$ hence f(X) is irreducible over \mathbb{Q} . It's Galois group $Gal(f/\mathbb{Q})$ is hence either S_3 or C_3 . The descriminant of f(X) is $D = -27 \cdot 2^2$. This is not a square in \mathbb{Q} and hence the Galois group is S_3 .

We shall now describe all intermediate extensions of \mathbb{Q} and the splitting field of f.

Let L be a splitting field of f over \mathbb{Q} . Since $Gal(L/\mathbb{Q}) = S_3$, we have that there are 3 intermediate extensions of degree 3 and one of degree 2.

The intermediate field of degree 2 is fixed by $C_3 \subseteq S_3$. Since C_3 is a normal subgroup of S_3 , we have that the intermediate field L^{C_3} is Galois over \mathbb{Q} . The other extensions are not normal subgroups of S_3 and hence none of their corresponding fixed fields are Galois over \mathbb{Q} . We obtain the following lattice diagrams

We can write α_2 and α_3 in terms of \sqrt{D} and α_1 . Note that

$$f(X) = (X - \alpha_1)g(X)$$

where

$$g(X) = X^2 + \alpha_1 X + \alpha_1^2 + a$$

We thus see that $\alpha_2, \alpha_3 = \frac{-\alpha_1 \pm \sqrt{\operatorname{disc}(g)}}{2}$. It is easily shown that $\operatorname{disc}(g) = (\alpha_2 - \alpha_3)^2$. Another calculation shows that $D = \operatorname{disc}(f) = g(\alpha_1)^2 \operatorname{disc}(g)$.

Example 11.3. Consider the polynomial $f(X) = X^3 + X + 1$ over the rational numbers. The image of f(X) under the map

$$\sigma : \mathbb{Q}[X] \to \mathbb{F}_2[X]$$
$$f(X) \mapsto f(X) \pmod{2}$$

has no roots in \mathbb{F}_2 and is hence irreducible over this field. We therefore have that f(X) is irreducible over the \mathbb{Z} and, by Gauss' Lemma, irreducible over \mathbb{Q} .

The discriminant of f(X) is given by

$$D = -4 - 27 = -31$$

This is not a square in the rational numbers. Hence $Gal(f/\mathbb{Q}) = S_3$.

Example 11.4. Consider the polynomial $f(X) = X^3 - X^2 - 2X + 1$ over the rational numbers. By argumentation similar to the previous example, we can see that f(X) is irreducible over \mathbb{F}_2 and thus over \mathbb{Z} . By Gauss' Lemma,

f(X) is irreducible over \mathbb{Q} .

By making the linear change of variable $X = X + \frac{1}{3}$ to get the polynomial $g(X) = X^3 - \frac{7}{3}X + \frac{7}{27}$, we can see that the discriminant is

$$D = -4 \cdot \left(\frac{-7}{3}\right)^3 - 27 \cdot \left(\frac{7}{27}\right)^2$$

= $4 \cdot \frac{7^3}{27} - \frac{7^2}{27}$
= $7^2 \left(\frac{28/27}{-27} + \frac{1}{27}\right)$
= 7^2

Hence D is a square in \mathbb{Q} and $Gal(f/\mathbb{Q}) \cong A_3$.

Symmetric Polynomials

Definition 12.1. Let X_1, \ldots, X_n be variables. We define the elementary symmetric functions in X_i to be

$$s_1 = X_1 + X_2 \dots + X_n$$

$$s_2 = X_1 X_2 + X_1 X_3 + \dots + X_{n-1} X_n = \sum_{i < j} X_i X_j$$

$$s_3 = \sum_{i < j < k} X_i X_j X_k$$

$$\vdots$$

$$s_n = X_1 X_2 \dots X_n$$

Obviously S_n acts on X_1, \ldots, X_n . This action can be extended to an action on the polynomial ring $R[X_1, \ldots, X_n]$ for any ring R. Let $f \in R[X_1, \ldots, X_n]$ and $\sigma \in S_n$. Then

$$\sigma(f)(X_1,\ldots,X_n) = f(X_{\sigma(1)},\ldots,X_{\sigma(n)})$$

Example 12.2. Let $f(X_1, X_2, X_3) = X_1X_2 + X_2^2X_3^2$ and $\sigma = (123) \in S_3$. Then $\sigma(f)(X_1, X_2, X_3) = X_2X_3 + X_3^2X_1^2$.

Definition 12.3. We say that a polynomial $f(X_1, \ldots, X_n) \in R[X_1, \ldots, X_n]$ is a symmetric polynomial if $\sigma(f) = f$ for all $\sigma \in S_n$.

Definition 12.4. We say that a polynomial $f(X_1, \ldots, X_n) \in R[X_1, \ldots, X_n]$ is a **partially symmetric polynomial** with respect to H if $\sigma(f) = f$ for all $\sigma \in H$ for some $H \subseteq S_n$. Example 12.5.

$$f(X_1,\ldots,X_n) = \prod_{1 \le i \le j \le n} (X_i - X_j)$$

is partially symmetric with respect to the subgroup $A_n \subseteq S_n$.

Example 12.6.

$$f(X_1, X_2, X_3, X_4) = X_1 X_3 + X_2 X_4$$

is partially symmetric with respect to the subgroup $D_4 \subseteq S_4$.

Theorem 12.7. Any symmetric polynomial in X_1, \ldots, X_n can be uniquely expressed in terms of elementary symmetric polynomials.

Example 12.8. $X_1^2 + X_2^2 + X_3^2 = s_1^2 - 2s_2$

Corollary 12.9. The ring $R[s_1, \ldots, s_n]$ is isomorphic to the polynomial ring in n variables over R.

Definition 12.10. A rational function $f \in K(X_1, ..., X_n)$ is symmetric if $\sigma(f) = f$ for all $\sigma \in S_n$.

Corollary 12.11. A symmetric rational function can be uniquely expressed as a rational function in s_1, \ldots, s_n .

Corollary 12.12. Let K be a field, $M = K(X_1, \ldots, X_n)$ and $L = K(s_1, \ldots, s_n)$. Then M/L is Galois with $Gal(M/L) \cong S_n$.

Definition 12.13. Let $f \in K[X]$ be a polynomial of degree n with roots $\alpha_1, \ldots, \alpha_n$. Then we define the **descriminant** of f by

$$D = \prod_{i < j} (\alpha_i - \alpha_j)^2$$

Remark. The polynomial $\prod_{i < j} (X_i - X_j)^2$ is symmetric meaning D is fixed by all $\sigma \in S_n$. It is clear that D is non-zero if and only if f is a seperable polynomial. We can also see that $D \in K$.

Quartic equation

Let $f(X) \in K[X]$ be a quartic polynomial. Then Gal(f/K) is a subgroup of S_4 . S_4 has 24 subgroups, namely

- Isomorphic to C_1 : $\{(1)\}$
- Isomorphic to C_2 : six subgroups generated by the six transpositions and three subgroups generated by the products of two distinct transpositions
- Isomorphic to C_3 : four subgroups generated by three cycles
- Isomorphic to $V_4 := C_2 \times C_2$: one transitive subgroup

 $V = \{(1), (12)(34), (13)(24), (14)(23)\}$

and three non-transitive subgroups from products of C_2 's above.

- Isomorphic to C_4 : three transitive subgroups generated by (1234), (1324), (1243)
- Isomorphic to S_3 : four non-transitive subgroups obtained as stabilisers of each element of the finite set.
- Isomorphic to D_4 : three transitive subgroups generated by the three C_4 's above and one by the non-transitive V_4 's above.
- The alternating subgroup A_4
- S_4

We shall only consider the cases where f is an irreducible quartic polynomial over K so that the Galois group is one of V, C_4, D_4, A_4, S_4 .

Proposition 13.1. Let $f(X) = X^4 + bX^2 + c \in K[X]$ be an irreducible separable polynomial. Then Gal(f/K) = V if and only if c is a square in K.

Proof. The roots of f(X) are given by $\pm \sqrt{r \pm s\sqrt{t}}$ where b = -2r and $c = r^2 - s^2 t$. Letting $\alpha = \sqrt{r + s\sqrt{t}}$ and $\alpha' = \sqrt{r - s\sqrt{t}}$ then the roots of f are $\alpha, -\alpha, \alpha', -\alpha'$. The splitting field for f over K is therefore $L = K(\sqrt{t}, \alpha, \alpha')$. Therefore |Gal(f/K)| divides 8. We hence have that Gal(f/K) is either C_4, D_4 or V.

The discriminant of f is given by

$$D = \delta^2 = 2^4 (b^2 - 4c)^2 c = 2^8 s^4 t^2 (r^2 - s^2 t)$$

If c is a square in K then so is D. Hence $Gal(f/K) \subseteq A_4$. Since the order of the Galois group must divide 8, the only choice is that Gal(f/K) = V. \Box

Remark. We also see from the above proof that $\sqrt{r + s\sqrt{t}}$ can be written as $\sqrt{a} + \sqrt{b}$ if and only if $r^2 - s^2 t$ is a square in K.

Remark. To check if a polynomial of the form $f(X) = X^4 + aX^2 + b$ is irreducible over K, we first consider the quadratic polynoial $g(Y) = Y^2 + aY + b$. If the roots of f are $\pm \alpha$ and $\pm \alpha'$ then the roots of g are α^2 and α'^2 . If g(X) is reducible then α^2 and α'^2 lie in K and hence f(X) factorises into $(X^2 - \alpha^2)(X^2 - \alpha'^2)$.

Conversely, if g(X) is irreducible then we just have to check if f(X) factorises over K[X] into two quadratic polynomials. Writing

$$f(X) = (X^{2} + aX + b)(X^{2} + cX + d)$$

we can check if there exist solutions of $a, b, c, d \in K$ with a and c non-zero. If such no such solution exists that f(X) is irreducible over K.

Example 13.2. Consider the polynomial $f(X) = X^4 - 10X^2 + 1$ over \mathbb{Q} . By the remark above, we can show that f is irreducible over \mathbb{Q} . The quadratic polynomial $Y^2 - 10Y + 1$ has no roots in \mathbb{Q} . Hence if f(X) is reducible, it should factorise as

$$f(X) = X^{4} - 10X^{2} + 1 = (X^{2} + aX + b)(X^{2} + cX + d)$$

= X⁴ + (a + c)X³ + (b + d + ac)X² + (bc + ad)X + bd

Hence, $a = -c, b + d - a^2 = -10, a(d - b) = 0$ and bd = 1. We see that $b = d = \pm 1$. Therefore $a^2 = \pm 2 + 10$ which has no rational solutions. Hence f(X) is irreducible over \mathbb{Q} .

By the proposition, since c = 1 is a square in \mathbb{Q} , we have that $Gal(f/\mathbb{Q}) \cong V$. By the fundamental theorem, there are three intermediate extensions of degree 2 over \mathbb{Q} . The roots of the polynomial are $\pm \sqrt{5 \pm 2\sqrt{6}}$. Let $\alpha_1 = -\alpha_2 = \sqrt{5 + 2\sqrt{6}}$ and $\alpha_3 = -\alpha_4 = \sqrt{5 - 2\sqrt{6}}$.

The orbit of α_1 under the group generated by $\sigma_1 := (12)(34)$ is $\{\alpha_1, \alpha_2\}$. Therefore the field fixed by σ_1 contains $\alpha_1 + \alpha_2 = 0$ and $\alpha_1 \alpha_2 = -(5 + 2\sqrt{6})$. The fixed field is thus $L^{\langle \sigma_1 \rangle} = \mathbb{Q}(\sqrt{6})$. Furthermore, the group generated by σ_1 is a normal subgroup of V. Therefore $\mathbb{Q}(\sqrt{6})$ is Galois over \mathbb{Q} .

The orbit of α_1 under the group generated by $\sigma_2 := (13)(24)$ is $\{\alpha_1, \alpha_3\}$. Therefore the field fixed by σ_2 contains $\alpha_1 + \alpha_3$ and $\alpha_1\alpha_3 = 1$. $(\alpha_1 + \alpha_3)^2 = 5 + 2\sqrt{6} + 5 - 2\sqrt{6} + 2\alpha_1\alpha_3 = 12$. Hence $\alpha_1 + \alpha_3 = \sqrt{12} = 2\sqrt{3}$. The fixed field is thus $L^{\langle \sigma_2 \rangle} = \mathbb{Q}(\sqrt{3})$. Furthermore, the group generated by σ_2 is a normal subgroup of V. Therefore $\mathbb{Q}(\sqrt{3})$ is Galois over \mathbb{Q} .

The orbit of α_1 under the group generated by $\sigma_3 := (14)(23)$ is $\{\alpha_1, \alpha_4\}$. Therefore the field fixed by σ_3 contains $\sigma_1 + \sigma_4$ and $\sigma_1 \sigma_4 = -1$. $(\sigma_1 + \sigma_4)^2 = 5 + 2\sqrt{6} + 5 - 2\sqrt{6} + 2\alpha_1\alpha_4 = 8$. Hence $\alpha_1 + \alpha_4 = \sqrt{8} = 2\sqrt{2}$. The fixed field is thus $L^{\langle \sigma_3 \rangle} = \mathbb{Q}(\sqrt{2})$. Furthermore, the group generated by σ_3 is a normal subgroup of V. Therefore $\mathbb{Q}(\sqrt{3})$ is Galois over \mathbb{Q} .

The lattice diagrams of the subgroups of $Gal(f/\mathbb{Q})$ and the intermediate fields of L and \mathbb{Q} are

From the above computations, we can obtain an explicit expression of the form $\sqrt{a} + \sqrt{b}$ for the roots of f. $\alpha_1 + \alpha_3 = 2\sqrt{3}$ and $\alpha_1 + \alpha_4 = \alpha_1 - \alpha_3 = 2\sqrt{2}$. Hence $\alpha_1 = \sqrt{2} + \sqrt{3}$ and $\alpha_3 = \sqrt{3} - \sqrt{2}$.

Example 13.3. Consider the polynomial $f(X) = X^4 - 4X^2 + 2$. By Eisenstein's criterion with the prime number 2, we have that f(X) is irreducible over the rational numbers. The roots of this polynomial are $\pm \sqrt{2 \pm \sqrt{2}}$. Denote $\alpha_1 = -\alpha_2 = \sqrt{2 + \sqrt{2}}$ and $\alpha_3 = -\alpha_4 = \sqrt{2 - \sqrt{2}}$. Since c = 2 is not a square in \mathbb{Q} , $Gal(f/\mathbb{Q})$ is either C_4 or D_4 . Consider the extension $L = \mathbb{Q}(\alpha_1)$. Trivially, $\alpha_1, \alpha_2 = L$. We can see that $\alpha_1\alpha_2 = \sqrt{2} \in L$ and $\alpha_1 + \alpha_3 = \sqrt{2\alpha}$. Hence all roots of f(X) are in L. L must therefore be a splitting field and hence is a normal extension of \mathbb{Q} . Thus |Gal(f/K)| = [L : K] = 4. We must therefore have that $Gal(f/K) = C_4$ as D_4 has order 8. C_4 has two proper subgroups, namely the trivial subgroup

and the cyclic group of order 2.

The orbit of α_1 under the permutation $\sigma := (12) \subseteq C_2$ is $\{\alpha_1, \alpha_2\}$. Therefore the field fixed by σ contains $\alpha_1 + \alpha_2$ and $\alpha_1 \alpha_2 = -\sqrt{2}$. $(\alpha_1 + \alpha_2)^2 = 2 + \sqrt{2} - 2(2 + \sqrt{2}) + 2 + \sqrt{2} = 0$. Hence we see that $L^{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{2})$. Furthermore, $C_2 \triangleleft C_4$ hence $L^{\langle \sigma \rangle}$ is Galois over \mathbb{Q} . The lattice diagrams are

Example 13.4. Consider the polynomial $f(X) = X^4 - 6X^2 + 7$ over the rational numbers. The quadratic polynomial $Y^2 - 6Y + 7$ has no rational roots. Hence if f(X) is reducible then it should factorise as

$$X^{4} - 6X^{2} + 7 = (X^{2} + aX + b)(X^{2} + cX + d)$$

= X⁴ + (a + c)X³ + (b + d + ac)X² + (bc + ad)X + bd

We have that b = d and thus $b^2 = 7$. This has no rational solutions hence f(X) is irreducible over \mathbb{Q} .

Now, c = 7 is not a square in \mathbb{Q} . Therefore $Gal(f/\mathbb{Q})$ is either C_4 or D_4 . The roots of f(X) are $\pm\sqrt{3\pm\sqrt{2}}$. Denote $\alpha_1 = -\alpha_2 = \sqrt{3+\sqrt{2}}$ and $\alpha_3 = -\alpha_4 = \sqrt{3-\sqrt{2}}$. $\alpha_1\alpha_2 = \sqrt{7}$ and $\alpha_1^2 - 3 = \sqrt{2}$. Hence any

splitting field L of f(X) must have two quadratic intermediate fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{7})$. This is only possible if $Gal(f/K) = D_4$. By the definition of D_4 , we have that $Gal(f/\mathbb{Q}) = \langle x = (1324), y = (13)(24) \rangle$. The following table shows whether or not each subgroup of D_4 fixes the roots and combinations of roots that are present in L. An element is designated fixed by \Box .

	$\langle x \rangle$	$\langle x^2 \rangle$	$\langle y \rangle$	$\langle xy \rangle$	$\langle x^2 y \rangle$	$\langle x^3 y \rangle$	$\{e\}$	D_4
α_1	×	Х	×	×	×			×
$lpha_3$	×	×	\times		×	×		×
$\sqrt{2}$	×		×		×			×
$\sqrt{7}$	×		Х	Х		×		×
$\sqrt{2},\sqrt{7}$	×		Х	Х	×	×		×
$\alpha_1 + \alpha_3$	×	×		×	×	×		×
$\alpha_1 - \alpha_3$	×	×	×	×		×		×
$\sqrt{14}$		×	×	×	×	×		×

We therefore obtain the following lattices

Example 13.5. Consider the polynomial $f(X) = X^4 - 6x^2 + 6$ over the rational numbers. By Eisenstein's criterion with the prime number 3, f(X) is irreducible over \mathbb{Q} . Since c = 6 is not a square in \mathbb{Q} , we have that $Gal(f/\mathbb{Q})$ is either C_4 or D_4 . The roots of the polynomial are $\pm\sqrt{3}\pm\sqrt{3}$. Denote $\alpha_1 = -\alpha_2 = \sqrt{3} + \sqrt{3}$ and $\alpha_3 = -\alpha_4 = \sqrt{3} - \sqrt{3}$. Now $\alpha_1\alpha_3 = \sqrt{6}$ and $\alpha_1^2 - 3 = \sqrt{3}$. Hence any splitting field L of f contains two quadratic intermediate extensions, namely $\mathbb{Q}(\sqrt{6})$ and $\mathbb{Q}(\sqrt{3})$ hence $Gal(f/K) \cong D_4$.

Definition 13.6. Let f(X) be a quartic polynomial with roots $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and consider the partially symmetric functions

$$\beta_1 = \alpha_1 \alpha_3 + \alpha_2 \alpha_4$$

$$\beta_2 = \alpha_1 \alpha_2 + \alpha_3 \alpha_4$$

$$\beta_3 = \alpha_1 \alpha_4 + \alpha_2 \alpha_3$$

then the polynomial

$$g(X) = (X - \beta_1)(X - \beta_2)(X - \beta_3)$$

lies in K[X] and is called the **cubic resolvent** of f(X).

If the cubic resolvent of a quartic polynomial is reducible in K[X] then Gal(f/K) is a subgroup of D_4 . Hence we can apply the above analysis with the discriminant D to determine whether the Galois group is V, C_4 or D_4 . If g(X) is irreducible in K[X] then the Galois group is either A_4 or S_4 . We can then determine which one it is by checking if the discriminant is a square in K. If it is then the $Gal(f/K) = A_4$. If not then $Gal(f/K) = S_4$. For a quartic polynomial of the form $f(X) = X^4 + aX + b$, the discriminant

For a quartic polynomial of the form $f(X) = X^4 + aX + b$, the discriminant is $D = -27a^4 + 256b^3$ and the cubic resolvent is $g(X) = X^3 - 4bX - a^2$.

Example 13.7. Let $f(X) = X^4 + X + 1$ be a polynomial over the rationals. f(X) is irreducible modulo 2 hence f is irreducible over \mathbb{Z} . By Gauss' Lemma, it is hence irreducible over \mathbb{Q} . The discriminant of f is D = -27 + 256 = 229 which is not a square in the rational numbers. The cubic resolvent of f is $g(X) = X^3 - 4X - 1$. g(X) is irreducible modulo 2 and is therefore irreducible over \mathbb{Z} by Gauss' Lemma. Hence $Gal(f/\mathbb{Q}) = S_4$.

Example 13.8. Consider the polynomial $f(X) = X^4 + 8X + 12$ over the rational numbers. This function is always positive at integers and thus has

no roots in \mathbb{Z} . Therefore it has no roots in \mathbb{Q} . This rules out factorisations into 4 linear factors or one linear factor and one cubic factor. However, the polynomial could still have a factorisation of two quadratics.

If f(X) factorises into two irreducible quadratic factors over \mathbb{Z} then it should do so modulo p for any prime p. But

$$f(X) = (X - 4)(X^3 + 4X^4 + X + 2) \pmod{5}$$

and $X^3 + 4X^2 + X + 2$ is irreducible modulo 5. Hence f(X) cannot factor into two irreducible quadratic polynomials over \mathbb{Z} . Therefore f is irreducible over \mathbb{Z} and by Gauss' lemma, over \mathbb{Q} .

The discriminant of f is $-3^3 \cdot 2^{12} + 2^8 \cdot 2^6 \cdot 3^3 = 3^3 \cdot 2^{12}(4-1) = 2^{12} \cdot 3^4$. This is a square in \mathbb{Q} hence the Galois group is either V or A_4 . The cubic resolvent of f is $g(X) = X^3 - 48X - 64$. This is irreducible mod 5 and hence over \mathbb{Q} . Therefore $Gal(f/K) = A_4$.

Finite Fields

Lemma 14.1. Let F be a finite field of characteristic p. Then $|F| = p^s$ for some $s \in \mathbb{N}$.

Proof. The characteristic homomorphism from \mathbb{Z} to F has kernel (p) for some prime p. Therefore $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is contained in F. We can then consider F as a finite dimensional vector space over \mathbb{F}_p . Therefore F has a basis b_1, \ldots, b_s of s elements, say. Then any $f \in F$ can be represented in the form $f = a_1b_1 + \cdots + a_sb_s$ for some $a_i \in \mathbb{F}_p$. Since each a_i can take p different values, we have that there must be p^s different elements in F for some $s \geq 1$. \Box

Lemma 14.2. If a field of order p^s exists for some $s \in \mathbb{N}$ then it is unique up to isomorphism.

Proof. Let F be a finite field of order p^s . Then F^{\times} is a finite abelian group of order $p^s - 1$. Therefore $\alpha^{p^s-1} = 1$ for all $\alpha \in \mathbb{F}^* \supset > \sim$. Hence $\alpha^{p^s} = \alpha$ for all $\alpha \in F$. Now let $f(X) = X^{p^s} - X$. Then $f(\alpha) = 0$ for all $\alpha \in F$. Since F has characteristic p, we see that f'(X) = -1 so f(X) is separable. Hence f has p^s different roots. We can thus see that F is a splitting field of f(X) over \mathbb{F}_p . Since any two splitting fields for a polynomial over the same base field are isomorphic, we have that any two fields of order p^s must be isomorphic. \Box

Proposition 14.3. Let p be a prime and $s \in \mathbb{N}$. Then the field of order p^s exists.

Proof. Consider the polynomial $f(X) = X^{p^s} - X \in \mathbb{F}_p[X]$. Let F be the splitting field of f(X) over $\mathbb{F}_p[X]$. Then \mathbb{F} is a finite field and $|F| \ge p^s$. Now let S be the set of roots of f(X) in F. We claim that S = F. It suffices to show that S is a field. Since f(0) = f(1) = 0, S contains 0 and 1. Now let $\alpha, \beta \in S$. It is easy to see that $\alpha + \beta, \alpha\beta, \alpha, \alpha^{-1}$ are all in S. Hence S is a field.

Remark. We denote the field of order p^s by \mathbb{F}_{p^s} . Note, however, that \mathbb{F}_{p^s} is never $\mathbb{Z}/p^s\mathbb{Z}$. Since \mathbb{F}_{p^s} is a separable splitting field over \mathbb{F}_p , it follows that \mathbb{F}_{p^s} is Galois over \mathbb{F}_p . Moreover, since $[\mathbb{F}_{p^s} : \mathbb{F}_p] = s$, we get that $|Gal(\mathbb{F}_{p^s}/\mathbb{F}_p)| = s$.

Definition 14.4. Let **Frob** be the automorphism of \mathbb{F}_{p^s} given by

$$Frob(x) = x^p$$

Frob is an \mathbb{F}_p -automorphism of \mathbb{F}_{p^s} . It is called the **Frobenius** automorphism.

Proposition 14.5. $\mathbb{F}_{p^s}^{\times}$ is a cyclic group of order $p^s - 1$.

Proof. Let $n = p^s - 1$. For all 0 < d|n, denote

 $\Omega_d := \{ \alpha \in \mathbb{F}_{p^s}^{\times} \mid \text{order of } \alpha \text{ is } d \}$

We claim that $|\Omega_d| \leq \varphi(d)$. If Ω_d is empty then $|\Omega_d| = 0$ and we are done. Hence assume that $|\Omega_d|$ is non-empty and $\alpha \in \Omega_d$. The polynomial $X^d - 1$ has at most d roots in \mathbb{F}_{p^s} and hence $1, \alpha, \alpha^2, \ldots, \alpha^{d-1}$ are all the roots of $X^d - 1$ in \mathbb{F}_{p^s} . Furthermore, $\alpha^i \in \Omega_d$ if and only if gcd(i, d) = 1. Hence Ω_d has $\varphi(d)$ elements.

Now we observe that any element of $\mathbb{F}_{p^s}^{\times}$ has order d for some 0 < d|n. Therefore,

$$\mathbb{F}_{p^s}^{\times} = \bigcup_{0 < d \mid n} \Omega_d$$

and the union is disjoint. Therefore

$$n = |\mathbb{F}_{p^s}^{\times}| = \sum_{0 < d|n} |\Omega_d| \le \sum_{0 < d|n} \varphi(d) = n$$

Hence we have an equality and each Ω_d is in fact non-empty and has exactly $\varphi(d)$ elements. Therefore $\mathbb{F}_{p^s}^{\times}$ has an element of order n and is thus cyclic. \Box

Corollary 14.6. The order of the Frobenius automorphism of \mathbb{F}_{p^s} is s. Therefore $Gal(\mathbb{F}_{p^s}/\mathbb{F})$ is a cyclic group generated by Frob.

Proof. Let m be the order of Frob of \mathbb{F}_{p^s} . Then $\alpha^{p^m} = \alpha$ for all $\alpha \in \mathbb{F}_{p^s}$. This is equivalent to having $\alpha^{p^m-1} = 1$ for all $\alpha \in \mathbb{F}_{p^s}^{\times}$. The least such m is s by the previous proposition. Hence the order of the Frobenius automorphism of \mathbb{F}_{p^s} is s.

Theorem 14.7. The field \mathbb{F}_{p^s} injects in $\mathbb{F}_{p^{s'}}$ if and only if s|s'.

Proof.

 \implies : Assume that \mathbb{F}_{p^s} injects in $\mathbb{F}_{p^{s'}}$. Then the group $Gal(\mathbb{F}_{p^s}/\mathbb{F})$ can be obtained through a quotient of the group $Gal(\mathbb{F}_{p^{s'}}/\mathbb{F})$. Hence s|s'.

 $: Conversely, \text{ if } s|s' \text{ then } (X^{p^s} - X)|(X^{p^{s'}} - X). \text{ Therefore, a splitting field of } X^{p^{s'}} - X \text{ over } \mathbb{F}_p \text{ contains a splitting field of } X^{p^s} - X \text{ over } \mathbb{F}_p.$

Theorem 14.8. Let p be a prime and $f(X) \in \mathbb{F}_p[X]$ a irreducible polynomial of degree d over \mathbb{F}_p . Then $Gal(f/\mathbb{F})$ is a cyclic group of order d. More generally, if f is not irreducible but nreaks into r irreducible factors of degree d_1, d_2, \ldots, d_r then $Gal(f/\mathbb{F}_p)$ is a cyclic group of order $lcm(d_1, d_2, \ldots, d_r)$.

Proof. Let $f(X) \in \mathbb{F}_p[X]$ be an irreducible polynomial of degree d and $F = \mathbb{F}[X]/(f(X))$. Then F is a field and the extension F/\mathbb{F}_p has degree d. Therefore $F \cong \mathbb{F}_{p^d}$. But we know that $\mathbb{F}_{p^d}/\mathbb{F}$ is a Galois extension. It contains a root of f(X) and hence f(X) must split completely in $\mathbb{F}_{p^s}[X]$. In particular, \mathbb{F}_{p^d} contains the splitting field of f. Since $\deg(f) = d = [\mathbb{F}_{p^d} : \mathbb{F}_p]$, we must have that \mathbb{F}_{p^d} is a splitting field of f over \mathbb{F}_p . Therefore $Gal(f/\mathbb{F}_p)$ is a cyclic group of order d.

Inverse Limits, Profinite Groups and Topology

Definition 15.1. Let \mathcal{F} be a set with a binary relation \leq that is reflexive, antisymmetric and transitive. Then we say that \mathcal{F} is a **partially ordered** set.

Definition 15.2. Let \mathcal{F} be a partially ordered set and $i, j \in \mathcal{F}$. We say that \mathcal{F} is **directed** if there exists $k \in \mathcal{F}$ such that $i \leq K$ and $j \leq K$.

Definition 15.3. Let \mathcal{F} be a directed partially ordered set and for every $i \in \mathcal{F}$ let G_i be a finite group. Consider a pair $i, j \in \mathcal{F}$ such that $i \leq j$ and $\varphi_{i,j} : G_j \to G_i$ a mapping satisfying $\varphi_{i,i} = id_{G_i}$ and if $i \leq j \leq k$ then $\varphi_{i,j} \circ \varphi_{j,k} = \varphi_{i,k}$.

We define the **inverse limit** $\varprojlim_{i\in\mathcal{F}} G_i$ to be the subset of $\prod_{i\in\mathcal{F}} G_i$ containing all $(x_i)_{i\in\mathcal{F}}$ such that $\varphi_{i,j}(x_j) = x_i$ for all $i \leq j$. This is a subgroup of $\prod_{i\in\mathcal{F}} G_i$. A group of the form $\varprojlim_{i\in\mathcal{F}} G_i$ is called a **profinite group**.

Example 15.4. Any finite group G is a profinite group. Indeed, we may take \mathcal{F} to be $\{1\}$ and $G_1 = G$.

Example 15.5. The set of natural numbers with usual ordering is a directed partially ordered set. Let p be a prime number and for every $n \in \mathbb{N}$, denote $G_n = \mathbb{Z}/p^n\mathbb{Z}$. The maps from $G_n \to G_m$ for any $m \leq n$ is the natural projection. Then the inverse limit $\varprojlim_n \mathbb{Z}/p^n\mathbb{Z}$ is called the group of **p**-adic integers.

Example 15.6. We may consider another ordering on \mathbb{N} . Let $m \leq n$ if m divides n. Then, with this ordering, \mathbb{N} is a directed partially ordered set. For every $n \in \mathbb{N}$, denote $G_n = \mathbb{Z}/n\mathbb{Z}$. We again take the map from $G_n \to G_m$ to be the natural projection for any m|n. The inverse limit $\varprojlim_n \mathbb{Z}/n\mathbb{Z}$ is denoted by $\hat{\mathbb{Z}}$.

Example 15.7. We again consider \mathbb{N} with its usual ordering and let $G_n = \mathbb{Z}/p^n\mathbb{Z}$. This time, consider the map $\varphi_n : G_n \to G_{n-1}$ to be multiplication by p. Then $\lim_{n \to \infty} G_n = 0$.

Example 15.8. Let K/F be a Galois extension (not necessarily finite) and G = Gal(K/F). Consider the set

 $\mathcal{F} = \{L \mid L/F \text{ is a finite Galois extension contained in } K\}$

We have the natural directed partial ordering on \mathcal{F} where $L \leq L'$ if $L \subseteq L'$. For every $L \in \mathcal{F}$, we have the group $G_L = Gal(L/F)$. For $L \subseteq L'$, there is the obvious restriction map $G_{L'} \to G_L$. Then \mathcal{F} is non-empty and $G \cong \lim_{L \to L} Gal(L/K)$.

Definition 15.9. Let X be a set and $\mathcal{P}(X)$ be the set of all subsets of X. Then a **topology** on X is a subset $\mathcal{T}(X)$ of $\mathcal{P}(X)$ such that

- 1. X and the empty set \emptyset are in $\mathcal{T}(X)$
- 2. Arbitrary unions of sets in $\mathcal{T}(X)$ are in $\mathcal{T}(X)$
- 3. Finite intersections of sets in $\mathcal{T}(X)$ are in $\mathcal{T}(X)$ A topological space is a pair $(X, \mathcal{T}(X))$ where X is a set and $\mathcal{T}(X)$ is a topology on X. The subsets of X contained in $\mathcal{T}(X)$ are called **open** subsets of X. A subset of X is called **closed** if its complement in X is open.

Definition 15.10. A basis of a topological space X is a collection \mathcal{B} of open subsets of X such that every open subset can be written as the union of sets in \mathcal{B} .

Definition 15.11. Let G be a profinite group. Then the **Krull Topology** on G is the topology with basis given by cosets of finite order subgroups of G. Let K/F be a Galois extension. Then the **Krull Topology** on Gal(K/F)is the one with the basis given by all cosets of Gal(K/L) where L is a finite extension of K. **Theorem 15.12.** Let K/F be a Galois extension and G = Gal(K/F). Let G be endowed with the Krull topology. Then there is a bijection between the closed subgroups H of G and the intermediate fields of K/F given by $H \mapsto K^H$ and $L \mapsto Gal(K/L)$.

For any subgroup H of G, we have that $Gal(K/K^H) = \overline{H}$.

A field L such that $F \subseteq L \subseteq K$ is a Galois extension of F if and only if Gal(K/L) is a normal subgroup of G. Moreover, the restriction map $G \rightarrow Gal(L/F)$ induces a continuous isomorphism

 $Gal(K/F)/Gal(K/L) \rightarrow Gal(L/F)$

Cyclotomic Extensions

Definition 16.1. We say that ζ_n is an n^{th} root of unity if $\zeta_n^n = 1$. If $\zeta_n = 1$ but $\zeta_n^m \neq 1$ for all $1 \leq m \leq n-1$, we say that ζ_n is the **primitive** n^th root of unity.

Definition 16.2. Let K be a subfield of \mathbb{C} . We say that the extension $K(\zeta_n)$ is the n^{th} cyclotomic extension of K.

Remark. The nth cyclotomic extension of K is the splitting field of $X^n - 1$ over K. Hence $K(\zeta_n)/K$ is Galois.

Lemma 16.3. Let n be a prime number. Then the minimal polynomial of ζ_n over \mathbb{Q} is $\Phi_n(X) := X^{n-1} + X^{n-2} + \cdots + 1$.

Proof. We note that

$$\Phi_n(X) = X^{n-1} + X^{n-2} + \dots + 1 = \frac{X^n - 1}{X - 1}$$

Hence $\Phi_n(\zeta_n) = 0$.

Lemma 16.4. Let $n \in \mathbb{N}$. Then the minimal polynomial $\Phi_n(X)$ of ζ_n over \mathbb{Q} is

$$\Phi_n(X) = \frac{X^n - 1}{\prod_{0 < d < n, d|n} \Phi_d(X)}$$

Proof. Let f(X) be the minimal polynomial over \mathbb{Q} . We prove that if p is a prime number not dividing n then ζ_n^p is a root of f(X). Obviously,

 $f(X)|(X^n - 1)$. Let $X^n - 1 = f(X)h(X)$. By Gauss' lemma, both f and h have integer coefficients. Since $X^n - 1$ is a seperable polynomial, ζ_n^p is either a root of f(X) or h(X) but not both. Assume that ζ_n^p is a root of h(X). Then $f(X)|h(X^p)$. Let $h(X^p) = f(X)g(X)$ for some monic $g(X) \in \mathbb{Z}[X]$. Now $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$ implies that

$$f(X)g(X) = h(X^p) \equiv h(X)^p \pmod{p}$$

Hence f(X) and g(X) have common factors modulo p and therefore $X^n - 1$ has multiple roots modulo p. But as p does not divide n and 0 is not a root of $X^n - 1$, the polynomial $X^n - 1$ cannot have multiple roots modulo p. Therefore ζ_n^p must be a root of f(X). Hence f(X) is also the minimal polynomial of ζ_n^p over \mathbb{Q} . Therefore, ζ_n^m is also a root of f(X) for any m coprime to n. Hence $\deg(f) \geq \varphi(n)$.

Now we denote the minimal polynomial of ζ_n by $\Phi_n(X)$. Then we claim that

$$\prod_{0 < d \mid n} \Phi_d(X) = X^n - 1$$

Note that $\Phi_d(X) \neq \Phi_{d'}$ if $d \neq d'$ as $\Phi_d(X)|X^d - 1$ and $\Phi_{d'}(X)$ does not divide $X^d - 1$ if d' > d. Hence $\Phi_d(X)$ are all pairwise coprime. Since $\Phi_d(X)|X^n - 1$ for every d|n, we have that $\prod_{0 < d|n} \Phi_d(X)|X^n - 1$. Using the results from the previous claim, we have that $\deg(\Phi_d) \geq \varphi(d)$ whence $\deg(\prod_{0 < d|n} \Phi_d(X)) \geq \sum_{0 < d|n} \varphi(d) = n$. Hence we see that $\prod_{0 < d|n} \Phi_d(X) = X^n - 1$.

Remark. Using the above lemma, we can recursively find the n^{th} cyclotomic polynomial.

Corollary 16.5. $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)$. More generally, $[K(\zeta_n) : K] \leq \varphi(n)$.

Proof. Since the degree of $\Phi_n(X)$ is $\varphi(n)$, the assertion about \mathbb{Q} is clear. Now we observe that $\Phi_n(X)$ is a monic polynomial with coefficients in \mathbb{Z} . We can therefore consider $\Phi_n(X)$ over any field and ζ_n is its root over such a field. Hence the minimal polynomial of ζ_n over K divides $\Phi_n(X)$ and thus $[K(\zeta_n):K] \leq \deg(\Phi_n(X)) = \varphi(n).$

Proposition 16.6. $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. More generally, $Gal(K(\zeta_n)/K)$ injects in $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof. We first observe that

$$\Phi_n(X) = \prod_{0 \le i \le n, \gcd(n, i) = 1} (X - \zeta_n^i)$$

The elements of $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ are determined by the images of ζ_n . Hence

$$Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) = \{\sigma_i \mid 0 \le i \le n, \gcd(n, i) = 1\}$$

where $\sigma_i(\zeta_n) = \zeta_n^i$. It obviously follows that the map

$$Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$$

 $\sigma_i \mapsto i$

is an isomorphism.

For a general field K, the minimal polynomial of ζ_n over K is a divisor of $\Phi_n(X)$. Hence only those σ_i 's lie om $Gal(K(\zeta_n)/K)$ for which ζ_n^i is a root of the minimal polynomial. Hence the above map forms an injection from $Gal(K(\zeta_n)/K)$ in $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Chapter 17 The equation $X^n - a$

Let $K \subseteq \mathbb{C}$ be a subfield and $a \in K$. Consider the polynomial $X^n - a \in K[X]$. If α is a root of $X^n - a$ then all the roots are of the form $\{\zeta_n^i \alpha \mid 0 \leq i \leq n\}$. Hence the splitting field of $X^n - a$ over K is $K(\zeta_n, \alpha)$. The extension $K(\zeta_n, \alpha)/K$ is normal since it is the splitting field of a polynomial. It is separable as K as a subfield of \mathbb{C} has characteristic 0.

To find $Gal(K(\zeta_n, \alpha)/K)$, we first consider the subgroup $Gal(K(\zeta_n, \alpha)/K(\zeta_n))$.

Proposition 17.1. $Gal(K(\zeta_n, \alpha)/K(\zeta_n))$ is a cyclic group of order dividing n.

Proof. The conjugates of α over $K(\zeta_n)$ is a subset of

$$\{\zeta_n^i \,|\, 0 \le i \le n\}$$

Now we define a map

$$\chi: Gal(K(\zeta_n, \alpha)/K(\zeta_n)) \to \mathbb{Z}/n\mathbb{Z}\lambda \qquad \mapsto i$$

if $\lambda(\alpha) = \zeta_n^i \alpha$. Then this mapping is a homomorphism and, since the image of α determines elements of the Galois Group, the map is injective. It is not necessarily surjective and is only so if $X^n - a$ is irreducible over $K(\zeta_n)$. Since the subgroups of any cyclic group are again cyclic groups, it follows that $Gal(K(\zeta_n, \alpha)/K(\zeta_n))$ is isomorphic to a cyclic group. \Box

Corollary 17.2. $Gal(K(\zeta_n, \alpha)/K)$ contains $Gal(K(\zeta_n, \alpha)/K(\zeta_n))$ as a normal subgroup and the quotient is abelian.

Proof. Using the fundamental theorem of Galois theory, since $K(\zeta_n)/K$ is a Galois extension, the subgroup $Gal(K(\zeta_n, \alpha)/K(\zeta_n))$ is a normal subgroup of $Gal(K(\zeta_n, \alpha)/K)$ and the quotient is isomorphic to $Gal(K(\zeta_n)/K)$ which is cyclic and hence abelian by the previous proposition.

Proposition 17.3. Let K be a field containing ζ_n and L a Galois extension of K such that Gal(L/K) is a cyclic group of order n. Then there exists an element $l \in L$ such that L = K(l) and $l^n \in K$.

Proof. Let σ be the generator of Gal(L/K). Then σ induces a K-linear transformation of the K-vector space L. Since σ is a finite order linear transformation, it is diagonalisable. Since σ^n is the identity, the eigenvalues of σ are the n^{th} roots of 1. Since σ^m is not the identity for all) < m < n then there must be an eigenvalue which is a primitive n^{th} root of 1. Let $l \in L$ be the corresponding eigevectro. We hence have that

$$\sigma(l) = \zeta l$$

where ζ is the primitive n^{th} root of 1. Note that $\sigma(\zeta) = \zeta$ as $\zeta \in K$. Hence $\sigma^i(l) = \zeta^i$. Therefore l has n conjugates over K. Therefore [K(l) : K] = n and so K(l) = L. Furthermore, $\sigma(l^n) = \sigma(l)^n = (\zeta l)^n = l^n$. Hence $l^n \in L^{\langle \sigma \rangle} = K$.

Solvability

Definition 18.1. A group G is called **solvable** if there exists a finite chain of subgroups

$$\{e\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_n = G$$

such that each G_{i-1} is normal in G_i and the quotient group G_i/G_{i-1} is cyclic for $1 \le i \le n$.

Lemma 18.2.

- 1. Let G be solvable and $H \subseteq G$ a subgroup. Then H is solvable.
- 2. Let $H \triangleleft G$ be a normal subgroup. Then G is solvable if and only if both H and G/H are solvable.
- 3. Any abelian group is solvable

Proof.

Part 1: Let G be a solvable group with a finite chain of subgroups

$$\{e\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_n = G$$

such that G_{i-1} is normal in G_i and the quotient group G_i/G_{i-1} is cyclic for $1 \leq i \leq n$. Let H be a subgroup of G and define $H_i = G_i \cap H$ for all $0 \leq i \leq n$. Hence we get the chain

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_n = H$$

Each H_{i-1} is normal in H_i . Indeed, let $h \in H_i$, then

$$hH_{i-1} = h \left(G_{i-1} \cap H\right)$$
$$= \left(hG_{i-1}\right) \cap \left(hH\right)$$

We have that $h \in H_i \iff h \in G_i \cap H_i \implies h \in G_i$. It is also clear that $h \in H$. Now since G_{i-1} is normal in G_i and H is trivially normal with respect to itself, we see that

$$hH_{i-1} = h (G_{i-1} \cap H)$$
$$= (hG_{i-1}) \cap (hH)$$
$$= (G_{i-1}h) \cap (Hh)$$
$$= (G_{i-1} \cap H) h$$
$$= H_{i-1}h$$

The quotient group H_i/H_{i-1} injects in G_i/G_{i-1} and must hence be cyclic. Therefore H is solvable.

Proposition 18.3. Let K be a field and $n \in \mathbb{N}$. If the char(K) is positive, we assume that n is coprime to char(K). Let $a \in K$. Then the Galois group of $X^n - a$ is solvable.

Proof. By Corollary 17.2, we can see that $Gal(K(\zeta_n, \alpha)/K \text{ contains } Gal(K(\zeta_n, \alpha)/K(\zeta_n)))$ as a normal subgroup and the quotient is abelian. Hence by the previous lemma, $Gal(K(\zeta_n, \alpha)/K)$ is solvable.

Definition 18.4. Let L/K be a field extension. We say that L/K is a **radi**cal extension if there exists an element $l \in L$ such that L = K(l) and $l^n \in K$ for some $n \in \mathbb{N}$.

Definition 18.5. Let L/K be a field extension. We say that L/K is solvable by radicals if there exists a chain of subfields

$$K = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_{n-1} \subseteq L_n \supseteq L$$

such that L_n/K is Galois and each extension L_i/L_{i-1} is a radical extension for $1 \le i \le n$.

Definition 18.6. Let α be an algebraic element over K. Then we say that α is solvable by radicals if $K(\alpha)/K$ is solvable by radicals.

Lemma 18.7. Let $f(X) \in K[X]$ be an irreducible polynomial and α a root of f(X). If α is solvable by radicals then so is any other root of f(X).

Proof. Let $L = K(\alpha)$ and each L_i subfields fitting the definition of a solvable by radical extension. Then L_n/K is Galois and contains α . Hence f(X)splits completely in L_n . Let β be another root of f(X). Then $K(\beta) \subseteq L_n$. Therefore $K(\beta)/K$ is solvable by radicals.

Definition 18.8. We say that L/K is **solvable** if there exists a finite degree Galois extension M/K such that $L \subseteq M$ and Gal(L/K) is a solvable group.

Theorem 18.9. Let L/K be a field extension. Then L/K is solvable if and only if L/K is solvable by radicals.