Galois Theory - 6CCM326A

Alexandre Daoud
King's College London
alex.daoud@mac.com

March 28, 2015

Chapter 1

Ring Theory Review

Definition 1.1. A commutative ring with 1 is a triple $(R,+, \times)$ comprising of a set R equipped with two binary operations, addition + and multiplication \times satisfying the following axioms:

1. $(R,+)$ is an abelian group
2. Multiplicaiton is associative
3. Multiplication distributes over addition
4. Multiplication is commutative
5. There exists $1_{R} \in R$ such that $1_{R} \times r=r \times 1_{R}=r$ for all $r \in R$

Remark. A normal ring does not require conditions 4 nor 5. We will refer to a commutative ring with 1 simply by ring henceforth.

Proposition 1.2. Consider an arbitrary ring R. Then there is a unique identity in R.

Proof. Let $e_{1} \neq e_{2} \in R$ be two distinct identities. By definition of a ring identity, we have that $e_{1} r=r e_{1}=r$ and $e_{2} r=r e_{2}=r$ for all $r \in R$.
We thus have $e_{1} e_{2}=e_{2} e_{1}=e_{1}$ and $e_{2} e_{1}=e_{2} e_{1}=e_{2}$. But this means that $e_{1}=e_{2}$ which is a contradiction. Hence R has a unique identity.

Example 1.3. Typical examples of rings are $\mathbb{Z}, \mathbb{Q}, \mathbb{C}$ all equipped with their usual addition and multiplication.

Example 1.4. Let $n \in \mathbb{N}$, we define the ring $\mathbb{Z} / n \mathbb{Z}$ of integers modulo \boldsymbol{n} as follows:
We first define an equivalence relation \sim on \mathbb{X} by

$$
a \sim b \text { if } a \equiv b(\bmod n)
$$

Then elements of $\mathbb{Z} / n \mathbb{Z}$ are the equivalence classes under this equivalence relation:

$$
[a]=\{b \in \mathbb{Z} \mid a \equiv b(\bmod n)\}
$$

Addition and multiplication is defined as $[a]+[b]=[a+b]$ and $[a][b]=[a b]$ respectively.

Definition 1.5. Let R be a ring and X an indeterminate. We define the ring of polynomials in \boldsymbol{X} over $\boldsymbol{R} R[X]$ to be

$$
R[X]=\left\{c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n} X^{n} \mid c_{i} \in R \forall 0 \leq i \leq n\right\}
$$

We define addition and multiplication on $R[X]$ as follows

$$
\begin{array}{r}
\left(\sum_{i} c_{i} X^{i}\right)+\left(\sum_{i} c_{i}^{\prime} X^{i}\right)=\sum_{i}\left(c_{i}+c_{i}^{\prime}\right) X^{i} \\
\left(\sum_{i} c_{i} X^{i}\right) \times\left(\sum_{i} c_{i}^{\prime} X^{i}\right)=\sum_{r}\left(\sum_{i+j=r} c_{i} c_{j}^{\prime}\right) X^{r}
\end{array}
$$

Remark.

1. We omit $c_{i} X^{i}$ when $c_{i}=0$
2. We write $c_{i} X^{i}$ as X^{i} when $c_{i}=1_{R}$
3. It is easily seen that R is a subset of $R[X]$ when considering the map $r \mapsto r+0 X+0 X^{2}+\ldots$
4. If Y is any other indeterminate then we have that $(R[X])[Y]=R[X][Y]=$ $(R[Y])[X]$

Definition 1.6. Let $R[X]$ be a polynomial ring and $f \in R[X]$ an arbitrary polynomial. We define the degree of f to be

$$
\operatorname{deg}(f)=\left\{\begin{array}{cl}
\max \left\{i \mid c_{i} \neq 0\right\} & \text { if } \exists j \text { s.t } c_{j} \neq 0_{R} \\
-\infty & \text { if otherwise }
\end{array}\right.
$$

Definition 1.7. Let $\left(R,+_{R}, \times_{R}\right)$ and $\left(S,+_{S}, \times_{S}\right)$ be two rings. We define a ring homomorphism to be a function $f: R \rightarrow S$ such that for all $r_{1}, r_{2} \in R$

1. $f\left(r_{1}+{ }_{R} r_{2}\right)=f\left(r_{1}\right)+{ }_{S} f\left(r_{2}\right)$
2. $f\left(r_{1} \times r_{2}\right)=f\left(r_{1}\right) \times_{S} f\left(r_{2}\right)$
3. $f\left(1_{R}\right)=1_{S}$

Definition 1.8. Let $(R,+, \times)$ be a ring. We say that a ring $\left(S,+_{S}, \times_{S}\right)$ is a subring of R if

1. $S \subseteq R$
2. $+\left._{S}\right|_{S \times S}=+_{R}$
3. $\times\left._{S}\right|_{S \times S}=\times_{R}$

Proposition 1.9. Let R be a ring and $S \subseteq R$ a subring. Then $1_{S}=1_{R}$.
Proof. Consider $s \in S \subseteq R$. We have, by definition, that $s \times{ }_{S} 1_{S}=1_{S} \times{ }_{S} s=$ s. Since S is a subring of R , we therefore have that $s \times_{R} 1_{S}=1_{S} \times_{R} s=s$. Now, since R is a ring, we can also see that $s \times_{R} 1_{R}=1_{R} \times_{R} s=s$. From the two previous results, we have that $s \times_{R} 1_{S}=s \times_{R} 1_{R}$. Multiplying on the left by s^{-1} we can see that $1_{S}=1_{R}$.

Definition 1.10. Let R be a ring. We say that a subset $I \subseteq R$ is an ideal of R if

1. $(I,+)$ is a subgroup of $(R,+)$
2. $i \in I, r \in R$ then $r i \in I$

We will denote an ideal by $I \triangleleft R$. We say that for $r \in R$, $(r)=\{x r \mid x \in R\}$ is the ideal generated by r.

Definition 1.11. Let R be a ring and $I \triangleleft R$ an ideal. We say that I is a principal ideal if there exists an element $r \in R$ such that $I=(r)$.

Definition 1.12. Let R be a ring and $I \triangleleft R$ an ideal. We define the quotient ring $\left(R / I,+_{I}, \times_{I}\right)$ as follows:
We take the quotient of $(R,+)$ by $(I,+)$ to get the group $\left(R / I,+_{I}\right)$ where

$$
R / I=\{\text { cosets of } I \text { in }(R,+)\}=\left\{[r]_{I} \mid r \in R\right\}
$$

and if $r_{1}, r_{2} \in R$ then

$$
\left[r_{1}\right]_{I}+{ }_{I}\left[r_{2}\right]_{I}=\left[r_{1}+r_{2}\right]_{I}
$$

The multiplication in R induces a multiplicative structure on R / I. If $r_{1}, r_{2} \in$ R then

$$
\left[r_{1}\right]_{I} \times_{I}\left[r_{2}\right]_{I}=\left[r_{1} \times r_{2}\right]
$$

Example 1.13. Let $n \in \mathbb{Z}$. Then the ring $\mathbb{Z} / n \mathbb{Z}$ is a quotient ring.
Definition 1.14. Let r_{1} and r_{2} be elements of a ring R. We say that $r_{1} \neq 0$ divides r_{2} if there exists $r_{3} \in R$ such that $r_{2}=r_{1} r_{3}$. Equivalently, r_{1} divides r_{2} if $\left(r_{2}\right) \subseteq\left(r_{1}\right)$. We denote this by $r_{1} \mid r_{2}$.

Definition 1.15. Let r be an element of a ring R. We say that r is a unit if $r \mid 1$. Equivalently, r is a unit if the ideal generated by r is the ring R. We also define the set

$$
R^{\times}=\{r \in R \mid r \text { is a unit }\}
$$

to be the set of units of R.
Remark. Given a ring R, it is easy to see that R^{\times}is a group under multiplication with identity 1_{R}.

Definition 1.16. Let r be a non-zero element of a ring R. We say that r is a zero divisor if there is a non-zero $s \in R$ such that $r s=0$.

Definition 1.17. A ring R is called a field if $R^{\times}=R-\{0\}$
Definition 1.18. A ring R is called an integral domain if it does not contain any zero divisors.

Definition 1.19. Let R be a ring. We define a homomorphism from the integers to R by

$$
\begin{aligned}
& f_{R}: \mathbb{Z} \rightarrow R \\
& f_{R}(n)=\left\{\begin{array}{cc}
\underbrace{1_{R}+\cdots+1_{R}}_{n \text { times }} & \text { if } n>0 \\
-\underbrace{\left(1_{R}+\cdots+1_{R}\right)}_{n \text { times }} & \text { if } n<0 \\
0 & \text { if } n=0
\end{array}\right.
\end{aligned}
$$

This is known as the characteristic homomorphism. We define the characteristic of a ring R to be the unique non-negative integer n such that $\operatorname{ker}\left(f_{R}\right)=(n)$.

Proposition 1.20. Let R be an integral domain. Then the characteristic of R is either 0 or a prime number.

Proof. Since R is an integral domain we have, by definition, that R has no zero-divisors. Now suppose that the characteristic n of R is composite. By definition of the characteristic of a ring we know that $f_{R}(n)=0$. Now since n is composite, it must factor into some $a, b \in \mathbb{N}$. Since f_{R} is a ringhomomorphism (by construction) we have that

$$
\begin{aligned}
& f_{R}(n)=0 \\
& \quad \Longrightarrow f_{R}(a b)=0 \\
& \Longrightarrow f_{R}(a) f_{R}(b)=0
\end{aligned}
$$

We have found zero-divisors $f_{R}(a), f_{R}(b) \in R$ which is obviously a contradiction to the assumption that R is an integral domain. Hence n cannot be composite and is either 0 or a prime.
Definition 1.21. Let $I \triangleleft R$ be an ideal of a ring R. We say that I is a prime ideal if $I \neq R$ and if for all $r_{1}, r_{2} \in R$

$$
r_{1} r_{2} \in I \Longrightarrow r_{1} \in I \text { or } r_{2} \in I
$$

An element $r \in R$ is called a prime element if the ideal (r) is a prime ideal.
We can equivalently define a prime element r if $r \notin R^{\times}$and if for all $r_{1}, r_{2} \in$ R

$$
r\left|\left(r_{1} r_{2}\right) \Longrightarrow r\right| r_{1} \text { or } r \mid r_{2}
$$

Definition 1.22. An element $r \notin R^{\times}$of a ring R is called irreducible if for all $r_{1} \in R$

$$
r_{1} \mid r \Longrightarrow r_{1} \in R^{\times}
$$

Proposition 1.23. Let R be an integral domain. Then every prime element in R is irreducible.

Proof. Suppose R is an integral domain and suppose that a prime element p is reducible. By definition we have that $p=a b$ for some $a, b \in R$. Obviously, p divides $a b$ and since p is a prime element we know, by definition, that either p divides a or p divides b . Suppose, without loss of generality, that p divides a. By definition of divisibility we have that $a=p k$ for some $k \in R$. Inserting this into $p=a b$, we have that

$$
\begin{aligned}
& p=a b \\
& \Longrightarrow p=p k b \\
& \Longrightarrow p-p k b=0 \\
& \Longrightarrow p(1-k b)=0
\end{aligned}
$$

Since R is an integral domain, we know that R has no zero divisors. Hence either $p=0$ or $1-k b=0$.
If $p=0$ then p is irreducible and we are done so assume that $1-k b=0$. It follows that $1=k b$ and hence both k and b must be units. However this contradicts the assumption that p is reducible as we require both a and b to be non-unitary factors of p. Hence p must be irreducible.

Definition 1.24. A ring R is called a unique factorisation domain if it is an integral domain and if every non-zero element can be uniquely written as a product of irreducible elements.

Proposition 1.25. Let R be a unique factorisation domain. Then every irreducible element of R is a prime.

Proof. Suppose R is a unique factorisation domain. Let $p \in R$ be an irreducible element and suppose that $a b \in(p)$ for some $a, b \in R$. We have that $a b=k p$ for some $k \in R$. Since R is a unique factorisation domain, a, b and k can be expressed as a unique product of irreducibles. Hence

$$
\begin{equation*}
\alpha_{1} \ldots \alpha_{n} \beta_{1} \ldots \beta_{m}=\gamma_{1} \ldots \gamma_{l} p \tag{1.1}
\end{equation*}
$$

for some irreducible $\alpha_{i}, \beta_{j}, \gamma_{k} \in R$. Since each factorisation of a, b and k must be unique, the irreducibles on the left hand side of (1.1) must match up with one on the right. Since p itself is an irreducible, it must match up with an irreducible on the left hand side. Hence p must be a factor of either a or b and thus $a \in(p)$ or $b \in(p)$ and p is a prime element.

Definition 1.26. A ring R is called a principal ideal domain if it is an integral domain and every ideal of R is a principal ideal.

Proposition 1.27. Let R be a principal ideal domain. Then it is a unique factorisation domain.

Definition 1.28. Let $I \triangleleft R$ be an ideal of a ring R. We say that I is a maximal ideal if $I \neq R$ and if $I \subseteq J \triangleleft R$ for some ideal J then $I=J$ or $J=R$.

Proposition 1.29. Let R be a ring and $I \triangleleft R$ an ideal. Then

1. I is a prime ideal if and only if the quotient ring R / I is an integral domain
2. I is a maximal ideal if and only if the quotient ring R / I is a field.
3. Every maximal ideal is also a prime ideal

Proof.

Part 1:
\Longrightarrow : Let R be a ring and $I \triangleleft R$ a prime ideal. We want to show that R / I is an integral domain. We first note that from the definition of cosets, for an ideal I and an element $r \in R, r+I=I \Longrightarrow r \in I$ and that I is itself the zero element of the quotient ring. Now suppose that $(r+I)(s+I)=I$ for some $r+I, s+I \in R / I$. By the definition of multiplication in a quotient ring, it follows that $r s+I=I$. From the properties of cosets mentioned before, this means that $r s \in I$. Now since I is a prime ideal, we have that either $r \in I$ or $s \in I$. But this just means that $r+I=I$ or $s+I=I$ which is exactly what it means for R / I to be an integral domain.
\Longleftarrow : Now suppose that R / I is an integral domain. We need to show that I is a prime ideal. Let $a, b \in R$ be such that $a b \in I$. By the definition of the
quotient ring R / I, we have that $a b+I=I$. It follows from the definition of multiplication in a quotient ring that $(a+I)(b+I)=I$. Since R / I is an integral domain, this must mean that either $a+I=I$ or $b+I=I$. Thus $a \in I$ or $b \in I$. We have shown that if $a b \in I$ then $a \in I$ or $b \in I$, hence I is a prime ideal.

Part 2:
\Longrightarrow : Let R be a ring and $I \triangleleft R$ a maximal ideal. We want to show that R / I is a field. In particular, we have to show that $(R / I)^{\times}=R / I-0_{R / I}=R / I-I$. Let $a+I \in R / I$ be a non-zero element. We want to show that there exists a $b+I \in R / I$ such that $(a+I)(b+I)=1+I$. By the definition of multiplication in a quotient ring, we have that $(a+I)(b+I)=a b+I=1+I$. Hence it suffices to show that there exists $b \in R$ such that $a b-1 \in I$. Now consider the ideal

$$
J=\{a r+i \mid i \in I\}
$$

for some $r \in R$. Obviously, this ideal properly includes the ideal I. But I is a maximal ideal so J must be equal to R. Hence $a r+i=1$ for some $r \in R$ and $i \in I$. This implies that ar $-1 \in I$. Passing back to the quotient ring, we see that $(\operatorname{ar}-1)+I=I$ which implies that $\operatorname{ar}+I=1+I$. By the definition of multiplication in the quotient ring, we have that $(a+I)(r+I)=1+I$. Hence we have found a b, namely r , for which $a+I$ has an inverse in the quotient ring. Hence the quotient ring is a field.
\Longleftarrow : Now suppose that R / I is a field. In particular, every non-zero element of R / I has an inverse. We want to show that I is a maximal ideal. Consider $J \supsetneqq I$ an ideal of R properly containing I and let $a \in J$ such that $a \notin I$. It follows that $a+I \neq I$ and hence, since R / I is a field, $(a+I)(b+I)=1+I$ for some $b \in R$. By the definition of multiplication in the quotient ring, we have that $a b-1 \in I$. Denote $i=a b-1$. We can see that $1=a b-m$. Since $a, m \in J$, it follows that $1 \in J$ which must mean that $J=R$. Hence I is a maximal ideal.

Part 3: Let I be a maximal ideal of R . By part 2 , we have that R / I is a field. Since all fields are integral domains, we have that R / I is an integral domain. By part 1 , this must mean that I is a prime ideal.

Lemma 1.30. Let R and S be two rings and $f: R \rightarrow S$ a homomorphism of rings. Then

1. $\operatorname{ker}(f)=\{r \in R \mid f(r)=0\}$ is an ideal of R
2. $\operatorname{Im}(f)$ is a subring of S
3. f induces an isomorphism of rings

$$
\begin{aligned}
R / \operatorname{ker}(f) & \rightarrow \operatorname{Im}(f) \\
{[r]_{\operatorname{ker}(f)} } & \mapsto f(r)
\end{aligned}
$$

for all $r \in R$.

Chapter 2

Polynomial rings

Definition 2.1. Let $f(X)=\left(c_{0}, c_{1}, \ldots\right)=\sum_{i} c_{i} X^{i}$ be a non-zero polynomial. The leading term (leading coefficient) if $f(X)$ is defined to be $c_{d} X^{d}\left(c_{d}\right)$. We say that $f(X)$ is monic if the leading coefficient is 1 .

Lemma 2.2. Let R be a ring and $f_{1}, f_{2} \in R[X]$ two polynomials. Then

1. $\operatorname{deg}\left(f_{1}+f_{2}\right) \leq \max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right)\right\}$
2. $\operatorname{deg}\left(f_{1} f_{2}\right) \leq \operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(f_{2}\right)$ with equality holding if R is an integral domain.

Proof. If either f_{1} or f_{2} are the zero polynomial then we are done hence suppose that $f_{1}, f_{2} \neq 0$. Let $f_{1}(X)=\sum_{i} c_{i} X^{i}$ and $f_{2}(X)=\sum_{i} d_{i} X_{i}$ for some constants $c_{i}, d_{i} \in R$.

Part 1: By the definition of addition of polynomials, we have that

$$
\operatorname{deg}\left(f_{1}(X)+f_{2}(X)\right)=\operatorname{deg}\left(\sum_{i}\left(c_{i}+d_{i}\right) X^{i}\right)
$$

By the definition of the degree of a polynomial, it follows that

$$
\begin{aligned}
\operatorname{deg}\left(\sum_{i}\left(c_{i}+d_{i}\right) X^{i}\right) & =\max \left\{i \mid c_{i}+d_{i} \neq 0\right\} \\
& \leq \max \left\{\max \left\{i \mid c_{i} \neq 0\right\}, \max \left\{i \mid d_{i} \neq 0\right\}\right\} \\
& =\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right)\right\}
\end{aligned}
$$

Part 2: Let $c_{n} X^{n}$ be the leading term of $f_{1}(X)$ and $d_{m} X^{m}$ the leading term of $f_{2}(X)$. Then by the definition of polynomial multiplication, we have that $f_{1}(X) f_{2}(X)=e_{n+m} X^{n+m}+\cdots+e_{0}$ for some constants $e_{i} \in R$. Obviously, the degree of $f_{1}(X) f_{2}(X)$ can be no greater than $n+m$. Hence we have that $\operatorname{deg}\left(f_{1}(X) f_{2}(X)\right) \ngtr \operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(f_{2}\right)$.
Since the ring R could have zero divisors, it could happen that $0=e_{n+m}=$ $c_{n} d_{m}$ and hence $\operatorname{deg}\left(f_{1}(X) f_{2}(X)\right)<\operatorname{deg}\left(f_{1}(X)\right)+\operatorname{deg}\left(f_{2}(X)\right)$. Hence it follows that $\operatorname{deg}\left(f_{1}(X) f_{2}(X)\right) \leq \operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(f_{2}\right)$.
In the case where R is an integral domain, it cannot have any zero divisors meaning e_{n+m} cannot be 0 hence the degree of $f_{1}(X) f_{2}(X)$ can never be less than $n+m$. We are thus left with $\operatorname{deg}\left(f_{1}(X) f_{2}(X)=\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(f_{2}\right)\right.$

Corollary 2.3. Let R be a ring. We have that

1. R is an integral domain if and only if $R[X]$ is an integral domain
2. $R^{\times} \subseteq R[X]^{\times}$with equality if R is an integral domain

Proof.

Part 1:
\Longrightarrow : Assume R is an integral domain and consider two polynomials $f, g \in$ $R[X]$. Suppose that $f g=0_{R}$ with $f, g \neq 0_{R}$. We can write $f=a_{n} X^{n}+\cdots+a_{0}$ and $g=b_{n} X^{n}+\cdots+b_{0}$ for some $a_{i}, b_{i} \in R$. We know that the leading term of $f g$, by definition of multiplication of polynomials is $a_{n} b_{n} X^{n}$. Since $f g=0_{R}$, we require that $a_{n} b_{n}=0_{R}$. Since R is an integral domain, either $a_{n}=0_{R}$ or $b_{n}=0_{R}$. Suppose, without loss of generality that $a_{n}=0_{R}$. This is a contradiction however as we assumed that $f \neq 0 \Longrightarrow a_{n} \neq 0_{R}$. Hence if $f g=0_{R}$ then either $f=0_{R}$ or $g=0_{R}$ and $R[X]$ is an integral domain.
$\Longleftarrow: ~ A s s u m e ~ R[X]$ is an integral domain and consider $a, b \in R$. Now consider the two polynomials $f(X)=a$ and $g(X)=b$ in $R[X]$. Assume that $f g=0_{R}$. This is equivalent to the assumption that $a b=0_{R}$. Since $R[X]$ is an integral domain, this means either $f(X)=a=0$ or $f(X)=b=0$, meaning that R is an integral domain.

Theorem 2.4. Let R be a field and $f, g \in R[X]$ two non-zero polynomials. Then there exists $q, r \in R[X]$ such that $f=q g+r$ with $\operatorname{deg}(r)<\operatorname{deg}(f)$. Furthermore, q and r are uniquely determined by f and g.

Proof. If $\operatorname{deg}(f)<\operatorname{deg}(g)$, we can take $q=0$ and $r=f$ and we are done so assume that $\operatorname{deg}(f) \geq \operatorname{deg}(g)$.
Now set $f(X)=a_{n} X^{n}+\cdots+a_{0}$ and $g(X)=b_{m} X^{m}+\cdots+b_{0}$ for some $a_{i}, b_{i} \in R$. We will prove the theorem by induction on the degree of f . For the base step, let $\operatorname{deg}(f)=1$ and we can take $q=\frac{a_{n}}{b_{n}}$ and $r=f-q g$.
Now assume that the theorem is true for $\operatorname{deg}(f)=k-1$. We want to show that it is true for $\operatorname{deg}(f)=k$.
Consider the polynomial

$$
\begin{aligned}
h & =f-\frac{a_{n}}{b_{m}} X^{n-m} g \\
& =a_{n} X^{n}+\cdots+a_{0}-\frac{a_{n}}{b_{m}} X^{n-m}\left[b_{m} X^{m}+\cdots+b_{0}\right] \\
& =a_{n} X^{n}+\cdots+a_{0}-\left[a_{n} X^{n}+\frac{a_{n} b_{m-1}}{b_{m}} X^{n-1}+\cdots+\frac{a_{n} b_{0}}{b_{m}} X^{n-m}\right] \\
& =\frac{a_{n} b_{m-1}}{b_{m}} X^{n-1}+\cdots+\frac{a_{n} b_{0}}{b_{m}} X^{n-m}+\cdots+a_{0}
\end{aligned}
$$

Obviously, this polynomial has degree $k-1$ and by the induction hypothesis, there exists a q_{1} and r_{1} such that $h=g q_{1}+r_{1}$. Now we have that

$$
\begin{aligned}
& h=g q_{1}+r_{1} \\
& \Longrightarrow f-\frac{a_{n}}{b_{m}} X^{n-m} g=g q_{1}+r_{1} \\
& \Longrightarrow f=g q_{1}+\frac{a_{n}}{b_{m}} X^{n-m} g+r_{1} \\
& \Longrightarrow f=g\left(q_{1}+\frac{a_{n}}{b_{m}} X^{n-m}\right)+r_{1}
\end{aligned}
$$

Hence we have found a $q=q_{1}+\frac{a_{n}}{b_{m}} X^{n-m}$ and $r=r_{1}$ hence the theorem is true for $\operatorname{deg}(f)=k$.
Now assume that $f=g q_{1}+r_{1}$ and $f=g q_{2}+r_{2}$ for distinct q_{1}, q_{2} and r_{1}, r_{2} with $\operatorname{deg}\left(r_{1}\right)<g$ and $\operatorname{deg}\left(r_{2}\right)<g$. We have that

$$
\begin{aligned}
& g q_{1}+r_{1}=g q_{2}+r_{2} \\
& \quad \Longrightarrow g\left(q_{1}-q_{2}\right)=r_{2}-r_{1}
\end{aligned}
$$

Hence $g \mid\left(r_{2}-r_{1}\right)$ but since $\operatorname{deg}\left(r_{2}-r_{1}\right)<\operatorname{deg}(g)$, we must have that $r_{2}-r_{1}=$ $0 \Longrightarrow r_{2}=r_{1}$. Furthermore, we then have that $g\left(q_{1}-q_{2}\right)=0$ and since $g \neq 0$, we must have $q_{1}=q_{2}$.

Corollary 2.5. Let R be a field and $f, g \in R[X]$ not both zero. Then there exists a unique $h \in R[X]$ such that

1. $h \mid f$ and $h \mid g$
2. h is monic
3. the degree of h is maximal among all $l \in R[X]$ such that $l \mid f$ and $l \mid g$

Such a polynomial is called the greatest common divisor of f and g.
Proof. Consider the set

$$
S=\{a(X) f(X)+b(X) g(X) \mid a(X), b(X) \in R[X], a f+b g \neq 0\}
$$

and let $h_{1}(X)=a_{1}(X) f(X)+b_{1}(X) g(X) \in S$ be the polynomial of least degree. If the leading coefficient is not 1_{R}, we can multiply though by its inverse, say a_{n}^{-1}, to obtain a monic polynomial $h(X)=a(X) f(X)+b(X) g(X)$ where $a(X)=a_{n}^{-1} a_{1}(X)$ and $b(X)=a_{n}^{-1} b_{1}(X)$. We claim that $h(X) \mid f(X)$ and $h(X) \mid g(X)$.
By the division algorithm for polynomials, we have that

$$
\begin{align*}
& f(X)=h(X) q(X)+r(X), \quad \operatorname{deg}(r(X))<\operatorname{deg}(h(X)) \\
& \quad \Longrightarrow r(X)=f(X)-h(X) q(X) \tag{2.1}
\end{align*}
$$

After substituting $h(X)$ into (2.1), we are left with

$$
r(X)=f(X)(1-q(X) a(X))-q(X) b(X) g(X)
$$

Now since $\operatorname{deg}(r(X))<\operatorname{deg}(h(X))$ and $h(X)$ is, by assumption, the polynomial of least degree in S, we have that $r(X) \notin S$. This implies that $r(X)$ must equal 0 .
We thus have that $f(X)=h(X) q(X)$ meaning that $h(X) \mid g(X)$. A similar argument can be applied to $g(X)$ to arrive at $h(X) \mid g(X)$.
The polynomial $h(X)$ is monic by construction so it remains to show the third part.
Consider a polynomial $l(X)$ such that $l(X) \mid f(X)$ and $l(X) \mid g(X)$. Then we have that $l(X) \mid(a(X) f(X)+b(X) g(X))$ for all $a(X), b(X) \in R[X]$. In particular, $l(X)$ must divide $h(X)$. Hence $h(X)$ must be the polynomial of maximal degree dividing both $f(X)$ and $g(X)$.

Corollary 2.6. If R is a field then $R[X]$ is a principal ideal domain.
Proof. Consider an ideal $I \triangleleft R[X]$. If I is the zero ideal then it is principal and we are done, hence let $I \neq\{0\}$.
Now consider the set

$$
S=\{f(X) \in I \mid f(X) \neq 0\}
$$

and choose $h(X) \in S$ such that $h(X)$ is of minimal degree. We claim that $I=(h(X))$. It suffices to show that $f(X)=h(X) q(X)$ for some $q(X) \in$ $R[X]$.
Since R is a filed, we can apply the division algorithm for polynomials and we have that

$$
f(X)=q(X) h(X)+r(X), \quad \operatorname{deg}(r(X))<\operatorname{deg}(h(X))
$$

for some $q(X), r(X) \in R[X]$. It follows that $r(X)=f(X)-q(X) h(X)$. Since $f(X), h(X) \in I$, we can see that $r(X) \in I$. But $r(X)$ has degree strictly less than $h(X)$ and $h(X)$ is a non-zero polynomial of least degree, hence $r(X)=0$.

Corollary 2.7. Let R be a field and consider a polynomial $g(X) \in R[X] \backslash R$. Then $g(X)$ is irreducible if and only if the ideal generated by $g(X)$ is maximal ideal of $R[X]$.

Proof.
\Longrightarrow : Let R be a field and $g(X) \in R[X] \backslash R$ an irreducible polynomial. We want to show that $(g(X))$ is maximal. Consider a polynomial $f(X) \in$ $R[X]$ such that $(g(X)) \subseteq(f(X)) \varsubsetneqq R[X]$. We therefore have that for some polynomial $h(X) \in R[X], g(X)=f(X) h(X)$.
Now since $f(X)$ is irreducible, we have that either $h(X) \in R[X]^{\times}$or $g(X) \in$ $R[X]^{\times}$. But $(f(X))$ is a proper principal ideal and hence we cannot have that $f(X) \in R[X]^{\times}$. Hence $h(X) \in R[X]^{\times}$. Therefore $(f(X))=(g(X))$ and the ideal generated by $g(X)$ is maximal across all proper ideals of $R[X]$.
$\Longleftarrow: ~ N o w ~ s u p p o s e ~ t h a t ~(g(X))$ is maximal. We want to show that $(g(X))$ is irreducible. Assume that $(g(X))$ is reducible and hence $g(X)=$ $f(X) h(X)$ for some non-units $f(X), h(X) \in R[X]$. Now since neither $f(X)$ and $h(X)$ are non-units, we have that $(g(X)) \varsubsetneqq(f(X))$ which contradicts the maximality of $(g(X))$. Hence $g(X)$ must be irreducible.

Definition 2.8. Let $f(X)=\sum_{i=0}^{d} c_{i} X^{i}$ be a polynomial in $R[X]$. We define the evaluation map at \boldsymbol{r} to be the map

$$
\begin{aligned}
e v_{r}: R[X] & \rightarrow R \\
f(X) & \mapsto f(r)
\end{aligned}
$$

Lemma 2.9. Let R be a ring and $S \subseteq R$ a subring. Consider $r \in R$. The smallest subring of R which contains both S and r is $S[R]=\left.e v_{r}\right|_{S[X]}$.
Lemma 2.10. Consider a ring R and the evaluation map ev for some $r \in R$ and $f(X)=\sum_{i=0}^{d} c_{i} X^{i} \in R[X]$. Then the kernel of the map $e v_{r}$ is the principal ideal $(X-r)$.

Proof. By the definition of the kernel, we have that the kernel of the evaluation map is

$$
\operatorname{ker}\left(e v_{r}\right)=\{f(X) \in R[X] \mid f(r)=0\}
$$

Obviously, this corresponds to all polynomials that have $r \in R$ as a root which is equivalent to all polynomials generated by the ideal $(X-r)$.

Definition 2.11. Consider a polynomial $f \in \mathbb{Z}[X]$. We say that f is primitive if $\operatorname{deg}(f) \geq 1$ and if the greatest common divisor of the coefficients of f is 1 .
Lemma 2.12. Consider two primitive polynomials $f=\sum_{i} a_{i} X^{i}, g=\sum_{i} b_{i} X^{i} \in$ $\mathbb{Z}[X]$. Then their product $f g$ is a primitive polynomial

Proof. Let $h(X)=f(X) g(X)$. Suppose that $h(X)$ is not primitive. Then there exists a prime p that is a common divisor of all the coefficients of $h(X)$. Since $f(X)$ and $g(X)$ are primitive, p cannot be a divisor of all of the a_{i} or all of the b_{i}. Let $a_{r} X^{r}$ and $b_{s} S^{r}$ be the terms of highest degree whose coefficient p does not divide, respectively in $f(X)$ and $g(X)$. Now consider the term of degree $r+s$ in $h(X)$. By the definition of multiplication of polynomials, its coefficient is given by

$$
\sum_{k+l=r+s} a_{k} b_{l}
$$

This sum contains the term $a_{r} b_{s}$ which is not divisible by p. Hence the entire sum is not divisible by p. This is a contradiction to the assumption that p is a common divisor of all the coefficients of $h(X)$. Hence there does not exist a prime which divides all the coefficients of $h(X)$, thus it is primitive.

Proposition 2.13. Consider a primitive polynomial $f \in Z[X]$. Then f is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$.

Proof.
\Longrightarrow : Let f be a primitive polynomial that is irreducible in $\mathbb{Z}[X]$ and let $f(X)=g(X) h(X)$ where $g(X), h(X) \in \mathbb{Q}[X]$. We can choose $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ such that $\frac{a}{b} f(X)$ and $\frac{c}{d} g(X)$ are primitive. Hence, by the previous lemma, $\frac{a c}{b d} f(X)$ is a primitive polynomial. But $f(X)$ is itself, by assumption, a primitive polynomial. Thus $\frac{a c}{b d}=1$.
We therefore have that $\frac{a b}{c d} g(X) h(X)=\left(\frac{a}{b} g(X)\right)\left(\frac{c}{d} h(X)\right)$ is a factorisation of $f(X)$ in $\mathbb{Z}[X]$. Since $f(X)$ is irreducible, we must either have that $\frac{a}{b} g(X) \in$ \mathbb{Z}^{\times}or $\frac{c}{d} h(X) \in \mathbb{Z}^{\times}$. Hence $g(X) \in Q[X]^{\times}$or $h(X) \in Q[X]^{\times}$.
\Longleftarrow : Now assume that f is a primitive polynomial that is irreducible in $\mathbb{Q}[X]$. Since $\mathbb{Z} \subseteq \mathbb{Q}$, it follows that f must be irreducible in $\mathbb{Z}[X]$.

Remark. The two previous lemmas are together referred to as Gauss' Lemma.
Proposition 2.14. (Eisenstein's Criterion)
Let $f(X)=\sum_{i=0}^{n} c_{i} X^{i}$ be a primitive polynomial of degree n in $\mathbb{Z}[X]$. If there exists a prime p such that

1. $p \mid c_{i}$ for $0 \leq i<n$
2. p^{2} does not divide c_{0}
then $f(X)$ is irreducible in $\mathbb{Q}[X]$.
Proof. Consider a prime p satisfying the hypothesis and the image $\bar{f}(X)$ of $f(X)$ under the map

$$
\begin{aligned}
\mathbb{Z}[X] & \rightarrow \mathbb{F}_{p}[X] \\
c_{i} & \mapsto c_{i}(\bmod \mathrm{p})
\end{aligned}
$$

Since $p \mid c_{i}$ for $0 \leq i<n$ and $f(X)$ is a primitive polynomial, the leading term of $\bar{f}(X)$ must be 1 while the other terms are congruent to 0 modulo p. Hence we have that $\bar{f}(X)=X^{n}$.
Now suppose that $f(X)$ is reducible. We have that $f(X)=g(X) h(X)$ for some $g(X), h(X) \in \mathbb{Z}[X]$ and $\operatorname{deg}(f)>\operatorname{deg}(g), \operatorname{deg}(h)$. Then $\bar{g}(X)=X^{m}$
and $\bar{h}(X)=X^{n-m}$ for some $0<m<n$. Hence the constant term of $g(X)$ and $h(X)$ are both divisible by p. This would imply that the constant term of f is divisible by p^{2} which contradicts the assumptions for the prime p. Hence f must be irreducible.

Chapter 3

Field Extensions

Definition 3.1. Let L be a field and $K \subseteq L$ a subfield. We define the field extension of \boldsymbol{L} over \boldsymbol{K} to be the pair (K, L) and denote it by L / K.

Remark. We can consider a field L to be a vector space over one of its subfields K. The elements of L are the vectors and the elements of K are the scalars

Definition 3.2. Let L / K be a field extension. We define the degree of K / L to be the dimension of L as a K-vector space. It is denoted by $[L: K]$.

Example 3.3. Let K be a field and $f(X) \in K[X]$ an irreducible polynomial of positive degree. Then $K[X] /(f(X))$ is a field by previous results and the map

$$
\begin{aligned}
i_{f}: K & \rightarrow K[X] /(f(X)) \\
k & \mapsto[k]_{f(X)}
\end{aligned}
$$

is a ring homomorphism. This gives a field extension $(K, K[X] /(f(X))$ whose degree is equal to deg (f).

Theorem 3.4. (Tower Law)
Consider two field extensions L / K and M / L. Then M / K is a field extension and

$$
[M: K]=[M: L][L: K]
$$

Proof. Let $\left\{m_{\alpha} \mid \alpha \in I\right\}$ be an L-basis of M and $\left\{l_{\beta} \mid \beta \in J\right\}$ be a K-basis of L. We will show that $\left\{m_{\alpha} l_{\beta} \mid \alpha \in I, \beta \in J\right\}$ is a K-basis of M.

Consider $m \in M$. Then

$$
m=\sum_{i=1}^{n} x_{i} m_{\alpha_{i}}
$$

for some $x_{i} \in L$. Now we can write each x_{i} as

$$
x_{i}=\sum_{j=1}^{k} y_{i j} l_{\beta_{j}}
$$

for some $y_{i j} \in K$. Thus

$$
m=\sum_{i} \sum_{j} y_{i j} m_{\alpha_{i}} l_{\beta_{j}}
$$

Hence the set $\left\{m_{\alpha} l_{\beta} \mid \alpha \in I, \beta \in J\right\}$ spans M as a K -vector space.
Now, if

$$
\sum_{i, j} a_{i j} m_{\alpha_{i}} l_{\beta_{j}}=0
$$

with $a_{i} j \in K$, then

$$
\sum_{i}\left(\sum_{j} a_{i j} l_{\beta_{j}}\right) m_{\alpha_{i}}=0
$$

Since $\left\{m_{\alpha} \mid \alpha \in I\right\}$ is linearly independent over L, we can see that $\sum_{j} a_{i j} l_{\beta_{j}}=$ 0 for each i. Again, since $\left\{l_{\beta} \mid \beta \in J\right\}$ is linearly independent over K, we can see that $a_{i} j=0$ for all i, j. Hence $\left\{m_{\alpha} l_{\beta} \mid \alpha \in I, \beta \in J\right\}$ is linearly independent and thus it forms a K-basis for M . The cardinality of this set is exactly equal to the product of the cardinalities of $\left\{m_{\alpha} \mid \alpha \in I\right\}$ and $\left\{l_{\beta} \mid \beta \in J\right\}$ hence it also follows that

$$
[M: K]=[M: L][L: K]
$$

Chapter 4

Algebraic Extensions

Definition 4.1. Let L / K be a field extension. An element $l \in L$ is said to be algebraic over K if there exists a non-zero polynomial $f \in K[X]$ such that $f(l)=0$. If there exists no such polynomial, the element l is said to be transcendental over K. The extension L / K is said to be algebraic if every element of L is algebraic over K.

Example 4.2. Let L / K be a field extension and $l \in L$. Consider the evaluation at l

$$
\begin{aligned}
e v_{L}: K[X] & \rightarrow L \\
f(X) & \mapsto f(l)
\end{aligned}
$$

It follows from this that l is transcendental over K if and only if $e v_{l}$ is injective.

Proposition 4.3. Let L / K be a finite dimensional field extension. Then L / K is algebraic.
Proof. Let L / K be a finite extension and $l \in L$. Consider the set

$$
\left\{1, l, l^{2}, \ldots\right\}
$$

If this set is finite then $l^{n}=1$ for some $n \in \mathbb{N}$. This implies that l is a root of the polynomial $f(X)=X^{n}-1 \in K[X]$ and hence l is algebraic over K. If the set is infinite then it cannot be linearly independent over K. Hence we have that

$$
\sum_{i} a_{i} l^{i}=0
$$

for some $a_{i} \in K$. Therefore, l is a root of $f(X)=\sum_{i} a_{i} X^{i} \in K[X]$ and l is algebraic over K.

Proposition 4.4. Let L / K be a field extension and $l \in L$ be algebraic over K. Then there is a unique polynomial $p(X) \in K[X]$ such that

1. $p(X)$ is monic
2. $p(l)=0$
3. $\operatorname{deg}(p(X))$ is minimal among the polynomials $q(X) \in K[X]$ satisfying $q(l)=0$
Furthermore, this polynomial is irreducible and is called the minimal polynomial of l over K. It is denoted by $\min _{l, K}(X)$.

Proof. Consider the evaluation map

$$
\begin{aligned}
e v_{l}: L[X] & \rightarrow L \\
f(X) & \mapsto f(l)
\end{aligned}
$$

Let $e=\left.e v_{l}\right|_{K[X]}$ and $I=k e r(e) \subseteq K[X]$. Since l is algebraic over K, the ideal I is non-trivial. It is also not the whole ring $K[X]$ since 1_{K} maps to itself and is hence not in the kernel. Therefore, since a polynomial ring is a principal ideal domain, we have that $I=(p(X))$ for some non-constant polynomial $p(X) \in K[X]$.
Now assume that $p(X)$ is monic. Obviously, $p(X)$ satisfies all three conditions listed in the proposition.
To show that $p(X)$ is irreducible, assume that it is reducible. Then $p(X)=$ $f(X) g(X)$ for some non-units $f(X), g(X) \in K[X]$ with $\operatorname{deg}(p)>\operatorname{deg}(f), \operatorname{deg}(g)$. Then $p(l)=f(l) g(l)=0$. This means that either $f(l)=0$ or $g(l)=0$. But this contradicts the fact that $p(X)$ is the polynomial of least degree in $K[X]$ where l is a root. Therefore, $p(X)$ is irreducible in $K[X]$.
Proposition 4.5. Let L / K be a field extension and $l \in L$ algebraic. Then there exists a unique isomorphism of rings

$$
\begin{aligned}
\theta_{l}: K[X] /(p(X)) & \rightarrow K[l] \\
{[X]_{(p(X))} } & \mapsto l \\
{[k]_{(p(X))} } & \mapsto k, \quad \forall k \in K
\end{aligned}
$$

In particular, $K[l]$ is a field and the degree of the extension $K[l] / K$ is equal to $\operatorname{deg}(p(X))$.

Proposition 4.6. Let L / K be a field extension and $L \in L$ transcendental. Then there exists a unique isomorphism of rings

$$
\begin{aligned}
\theta_{k}: K[X] & \rightarrow K[l] \\
X & \mapsto l \\
k & \mapsto k, \quad \forall k \in K
\end{aligned}
$$

In particular, $K[l]$ is not a field and the degree of the field extension is infinite.
Definition 4.7. Let L / K be a field extension and $l_{1}, l_{2} \in L . l_{1}$ and l_{2} are said to be conjugates if they are both algebraic over K and have the same minimal polynomial.

Corollary 4.8. Let K be a field, $f(X) \in K[X]$ irreducible and L_{1}, L_{2} extensions of K. If l_{1} and l_{2} are roots of $f(X)$ in L_{1} and L_{2} respectively then there exists a unique isomorphism of fields

$$
\begin{aligned}
\theta: K\left[l_{1}\right] & \rightarrow K\left[l_{2}\right] \\
l_{1} & \mapsto l_{2} \\
k & \mapsto k, \quad \forall k \in K
\end{aligned}
$$

Proof. This follows by considering the maps

$$
K\left[L_{1}\right] \leftarrow K[X] /(p(X)) \rightarrow K\left[L_{2}\right]
$$

Definition 4.9. Let R be an integral domain and consider the set $\left\{\left.\frac{r}{s} \right\rvert\, r, s \in\right.$ $R, s \neq 0\}$. We define an equivalence relation $\frac{r}{s} \sim \frac{r^{\prime}}{s^{\prime}} \Longleftrightarrow r s^{\prime}=r^{\prime} s$. We then define

$$
\operatorname{Frac}(R)=\left\{\left.\frac{r}{s} \right\rvert\, r, s \in R, s \neq 0\right\} / \sim
$$

to be the field of fractions of R.
Lemma 4.10. Let R be an integral domain. Then

1. $\operatorname{Frac}(R)$ is a field
2. R injects into $\operatorname{Frac}(R)$ with the map $r \rightarrow \frac{r}{1_{R}}$
3. If $\sigma: R \rightarrow K$ is an injective ring homomorphism then there is a unique ring homomorphism $\tilde{\sigma}: \operatorname{Frac}(R) \rightarrow K$ such that the following diagram commutes

Example 4.11. $\operatorname{Frac}(\mathbb{Z}) \cong \mathbb{Q}$
Example 4.12. If R is a field then $\operatorname{Frac}(R) \cong R$
Remark. Let L / K be a field extension and l_{1}, \ldots, l_{n} elements of L. Then we write

$$
K\left(l_{1}, \ldots, l_{n}\right):=\operatorname{Frac}\left(K\left[l_{1}, \ldots, l_{n}\right]\right)
$$

Definition 4.13. Let L / K be a field extension. We say that L is generated by l_{1}, \ldots, l_{n} over K if $L=K\left(l_{1}, \ldots, l_{n}\right)$. The elements l_{1}, \ldots, l_{n} are called generators of L over K.

Definition 4.14. Let L / K be a field extension. We say that L / K is simple if L is generated by a single element over K.

Chapter 5

Embeddings of Fields

Definition 5.1. Let K be a field and $f(X) \in K[X]$ a polynomial. We say that $f(X)$ splits completely in K if

$$
f(X)=c\left(X-k_{1}\right) \ldots\left(X-k_{n}\right)
$$

for some $c, k_{1}, \ldots, k_{n} \in K$.
Proposition 5.2. Let K be a field and $f(X) \in K[X]$ a polynomial. Then there exists a field extension L / K of finite degree such that $f(X)$ splits completely in $L[X]$.

Proof. We prove the theorem by induction on $\operatorname{deg}(f)$. For the basis case, assume $\operatorname{deg}(f)=1$. By definition, $f(X)$ splits completely in $K[X]$. Now assume that the proposition is true for any polynomial $f(X) \in K[X]$ with $\operatorname{deg}(f(X)) \leq n$. Hence there exists a field extension L of K in which $f(X)$ splits completely.
We now consider a polynomial $f(X)$ where $\operatorname{deg}(f(X))=n+1$. If $f(X)$ is reducible then we can write $f(X)=g(X) h(X)$ where $\operatorname{deg}(g), \operatorname{deg}(h) \leq n$. By the induction hypothesis, we can find a field extension L_{1} of K in which $g(X)$ splits completely. We can again apply the induction hypothesis to L_{1} and $h(X)$ to obtain a field L_{2} in which $h(X)$ splits completely. Hence $f(X)$ splits completely in L_{2} and we are done.
On the other hand, if $f(X)$ is irreducible over $K[X]$ then we can take the finite extension $L_{1}=K[X] /(f(X))$. Then L_{1} contains a root of $f(X)$. Hence $f(X)$ is reducible over L_{1} and by the previous case, we can construct a finite extension of L_{1} containg all roots of $f(X)$.

Definition 5.3. Let K be a field and $f(X) \in K[X]$ a polynomial. Consider an extension L / K such that $f(X)$ splits completely in $L[X]$, say $f(X)=$ $c\left(X-l_{1}\right) \ldots\left(X-l_{n}\right)$ where $c, l_{1}, \ldots, l_{n} \in L$. The subfield of L generated by l_{1}, \ldots, l_{n} over K is called a splitting field of $f(X)$ over K.

Definition 5.4. Let L_{1} / K and L_{2} / K be two field extensions. A \boldsymbol{K}-embedding (K-isomorphism) from L_{1} to L_{2} is an injective (bijective) ring homomorphism that fixes all elements of K :

$$
\theta: L_{1} \rightarrow L_{2}
$$

such that $\left.\theta\right|_{k}$ is the identity map.
Remark. Let $\theta: L_{1} \rightarrow L_{2}$ be a ring homomorphism. It extends uniquely to a ring homomorphism

$$
\begin{aligned}
\bar{\theta}: L_{1}[X] & \rightarrow L_{2}[X] \\
\sum_{i} c_{i} X^{i} & \mapsto \sum_{i} \theta\left(c_{i}\right) X^{i}
\end{aligned}
$$

We note that

1. If θ is injective then $\bar{\theta}$ is injective
2. Let $f(X) \in L_{1}[X]$. An element $l_{1} \in L_{1}$ is a root of $f(X)$ if and only if $\theta\left(l_{1}\right)$ is a root of $\theta(f(X))$
3. Assume that θ is bijective. The polynomial $f(X)$ is irreducible in $L_{1}[X]$ if and only if $\bar{\theta}(f(X))$ is irreducible in $L_{2}[X]$

Definition 5.5. Let L / K be a field extension and $\sigma:$ LtoL an automorphism. We say that σ is a K-automorphism if σ fixes every element of K.

Proposition 5.6. Let L / K be an algebraic field extension. Then every $K-$ embedding of L into itself is necessarily a K-automorphism.

Proof. Since every ring homomorphism is injective, it suffices to show that any K-endomorphism of L is surjective. Let σ be a K-embedding of L . Since σ is a K-embedding, we have that for all $f[X] \in K[X], \sigma(f(X))=f(X)$. Hence l is a root of $f(X)$ if and only if $\sigma(l)$ is a root of $f(X)$.
Consider $l \in L$. We want to show that there exists $l_{1} \in L$ such that $\sigma\left(l_{1}\right)=l$.

Since L / K is an algebraic extension, there exists a polynomial $f(X) \in K[X]$ of minimal degree such that $f(l)=0$. Let $\left\{l_{1}, \ldots, l_{r}\right\}$ be all the roots of the polynomial $f(X)$ in L . Then σ induces an injective map from $\left\{l_{1}, \ldots, l_{r}\right\}$ to itself. Since this is a finite set, the induced map must also be surjective. Hence l must be in the image of σ.

Definition 5.7. Let L / K be a field extension. We write $\mathbf{A u t}_{\mathbf{K}}(\mathbf{L})$ for the group of K-automorphisms of L.

Theorem 5.8. (Artin's Extension Theorem)
Let K_{1} and K_{2} be two fields, $\sigma: K_{1} \rightarrow K_{2}$ a field isomorphism and $f \in$ $K_{1}[X]$ an irreducible polynomial. Furthermore, let α be a root of $f(X)$ in an extension L_{1} of K_{1} and β a root of $\bar{\sigma}(f(X))$ in an extension L_{2} of K_{2}. Then there exists a unique isomorphism of fields

$$
\tau: K_{1}(\alpha) \rightarrow K_{2}(\beta)
$$

such that $\tau(\alpha)=\beta$ and $\left.\tau\right|_{K_{1}}=\sigma$. This is shown by the following diagram

Proof. We note that $\bar{\sigma}$ induces an isomorphism, which we again denote by $\bar{\sigma}$:

$$
\bar{\sigma}: K_{1}[X] /(f(X)) \rightarrow K_{2}[X] /(\bar{\sigma}(f(X)))
$$

Then the proposition follows directly from Proposition 4.5 and the following diagram

Corollary 5.9. Let K_{1} and K_{2} be two fields and $\sigma: K_{1} \rightarrow K_{2}$ an isomorphism of fields. Consider a polynomial $f \in K_{1}[X]$ and choose splitting fields L_{1} for f over K_{1} and L_{2} for $\bar{\sigma}(f)$ over K_{2}. Then there exists an isomorphism

$$
\tau: L_{1} \rightarrow L_{2}
$$

such that $\tau_{K_{1}}=\sigma$. In particular, if $K_{1}=K_{2}=K$ and $\sigma=i d_{K}$, we have that any two splitting fields for f over K are K-isomorphic.

Proof. We prove the corollary by induction on $\operatorname{deg}(f)$. If $\operatorname{deg}(f)=1$ then $L_{1}=K_{1}$ and $L_{2}=K_{2}$ and there is nothing to prove. Now assume that the corollary is true for $\operatorname{deg}(f)<n$.
Let f be a polynomial of degree n . If f is reducible then take an irreducible factor p of f in $K_{1}[X]$. Then $\bar{\sigma}(p)$ is an irreducible factor of $\bar{\sigma}(f)$ in $K_{2}[X]$. Now let $M_{1} \subseteq L_{1}$ be the splitting field of p and $M_{2} \subseteq$ the splitting field of $\bar{\sigma}(p)$. Then by the induction hypothesis, there is an isomorphism

$$
\tau^{\prime}: M_{1} \rightarrow M_{2}
$$

such that $\left.\tau^{\prime}\right|_{K_{1}}=\sigma$. Next we can apply the induction hypothesis to M_{1}, M_{2} and τ^{\prime} to get an isomorphism

$$
\tau: L_{1} \rightarrow L_{2}
$$

such that $\left.\tau\right|_{M_{1}}=\left.\tau^{\prime} \Longrightarrow \tau\right|_{K_{1}}=\sigma$.
Now we consider the case where f is irreducible. Let α be a root of f in L_{1} and β a root of $\bar{\sigma}(f)$ in L_{2}. Then by Artin's Extension Theorem, we have that there is an isomorphism

$$
\tau^{\prime}: K_{1}(\alpha) \rightarrow K_{2}(\beta)
$$

such that $\left.\tau^{\prime}\right|_{K_{1}}=\sigma$. Over the field $K_{1}(\alpha)$, the polynomial f is reducible and hence we are done by the previous case.

Theorem 5.10. Let $\sigma: K_{1} \rightarrow K_{2}$ be a field embedding and let L_{1} / K_{1} be a finite extension. Then for any given extension M / K_{2} there are at most [$\left.L_{1}: K_{1}\right]$ distinct embeddings

$$
\tau: L_{1} \rightarrow M
$$

such that $\left.\tau\right|_{K_{1}}=\sigma$

Proof. We prove the theorem by induction. Let $L_{1}=K_{1}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ for some $\alpha_{1}, \ldots, \alpha_{r} \in L_{1}$. We first prove the result for $K_{1}\left(\alpha_{1}\right) / K_{1}$.
Let $f_{1}(X) \in K_{1}[X]$ be the minimal polynomial of α_{1} over K_{1}. Let $\bar{\sigma}\left(f_{1}\right)=$ $f_{2}(X) \in K_{2}[X]$. If f_{2} has no roots in M then there is no embedding of $K_{1}\left(\alpha_{1}\right)$ in M. More generally, if $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ are the roots of f_{2} in M, then there are m embeddings $\tau_{1}, \ldots, \tau_{m}$

$$
\tau_{i}: K_{1}\left(\alpha_{1}\right) \rightarrow M
$$

such that $\left.\tau_{i}\right|_{K_{1}}=\sigma$ and $\tau_{i}\left(a_{1}\right)=\beta_{i}$. Moreover, these are all the embeddings since α_{1} has to map to a root of f_{2} and the image of α_{1} determines τ. Since $m \leq \operatorname{deg}\left(f_{1}\right)=\left[K_{1}\left(\alpha_{1}\right): K_{1}\right]$, the theorem is true for $K_{1}\left(\alpha_{1}\right) / K_{1}$.
Now assume that the theorem is true for $K_{1}\left(\alpha_{1}, \ldots, \alpha_{s}\right) / K_{1}$ for some $1 \leq$ $s<r$. Let $L_{0}=K_{1}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ and fix an embedding $\tau: L_{0} \rightarrow M$ such that $\left.\tau\right|_{K_{1}}=\sigma$. Then by what we have just proven, we have that the number of embeddings

$$
\tau^{\prime}: L_{0}\left(\alpha_{s+1}\right) \rightarrow M
$$

such that $\left.\tau^{\prime}\right|_{L_{0}}=\tau$ is less than or equal to $\left[L_{0}\left(\alpha_{s+1}\right): L_{0}\right]$. Hence the number of embeddings

$$
\tau: L_{0}\left(\alpha_{s+1}\right) \rightarrow M
$$

such that $\left.\tau\right|_{K_{1}}=\sigma$ is less than or equal to $\left[L_{0}\left(\alpha_{s+1}\right): L_{0}\right]\left[L_{0}: K_{1}\right]=$ $\left.\left[L_{0}\left(\alpha_{s+1}\right): K_{1}\right)\right]$.

Chapter 6

Separable Extensions

Definition 6.1. Let $f(X) \in K[X]$ be a polynomial. We say that $f(X)$ is separable if it has $\operatorname{deg}(f(X))$ distinct roots in every splitting field over K. If L / K is a field extension, we say that an element $l \in L$ is separable over K if it is algebraic over K and its minimal polynomial $p(X)$ is separable. We say that an extension L / K is separable if it is algebraic and every element of L is separable over K.
Definition 6.2. Let $f(X)=c_{n} X^{n}+\cdots+c_{0}$ be a polynomial. We define its derivative $f^{\prime}(X)$ to be

$$
f^{\prime}(X)=n c_{n} X^{n-1}+(n-1) c_{n-1} X^{n-2}+\cdots+c_{1}
$$

Lemma 6.3. Consider a field K, an element $a \in K$ and a polynomial $p(X) \in$ $K[X]$. Then a is a multiple root of $p(X)$ if and only if $p(a)=0$ and $p^{\prime}(a)=0$. Proof.
\Longrightarrow : Let a be a multiple root of $p(X)$. Then $p(X)=(X-a)^{n} f(X)$ for some $f(X) \in K[X]$ and $n \geq 2$. Obviously, $p(a)=0$.
Now, by the product rule and chain rule, we see that $p^{\prime}(X)=n(X-$ $a)^{n-1} f(X)+(X-a)^{n} f^{\prime}(X)$. Hence $p^{\prime}(a)=0$.
$\Longleftarrow: ~ N o w ~ a s s u m e ~ t h a t ~ p(a)=0$ and $p^{\prime}(a)=0$ and assume that the a is not a multiple root of $p(X)$. Then we have that $p(X)=(X-a) f(X)$ for some $f(X) \in K[X]$ where a is not a root of $f(X)$. By the product rule, we have that $p^{\prime}(X)=f(X)+(X-a) f^{\prime}(X)$. Now, $p^{\prime}(a)=f(a)$. But a is not a root of $f(X)$ hence $f(X) \neq 0$ which is a contradiction to the assumption that $p^{\prime}(a)=0$. Hence a must be a multiple root of $p(X)$.

Definition 6.4. Let K be a field. We say that K is perfect if either $\operatorname{char}(K)=$ 0 or $\operatorname{char}(K)=p$ for some prime p and the map

$$
\begin{aligned}
\sigma: K & \rightarrow K \\
x & \mapsto x^{p}
\end{aligned}
$$

is an isomorphism.
Example 6.5. $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is a perfect field.
Example 6.6. Let $\mathbb{F}_{p}(t)$ be the field of fractions of the polynomial ring $\mathbb{F}_{p}[t]$. Then $\mathbb{F}_{p}(t)$ is not a perfect field.

Proposition 6.7. Let K be a perfect field and L / K a field extension. If $l \in L$ is algebraic over K then all the roots of the minimal polynomial of l over K are simple.

Proof. Let $f(X) \in K[X]$ be the minimal polynomial of l over K. Then $f(X)$ is irreducible over K. We also note that $\operatorname{deg}(f)>\operatorname{deg}\left(f^{\prime}\right)$. Now let a be a root of f. By the previous lemma, we have that a is a multiple root if and only if $f^{\prime}(a)=0$. Since f is irreducible over K, f must also be the minimal polynomial of a over K. If $f^{\prime}(a)=0$, then $f(X) \mid f^{\prime}(X)$. But as $\operatorname{deg}(f)>\operatorname{deg}\left(f^{\prime}\right)$, we must have that $f^{\prime}(X)=0$. This is not possible in a characteristic 0 field. Hence if $\operatorname{char}(K)=0, f^{\prime}(a) \neq 0$ and all roots of f are simple roots.
If $\operatorname{char}(K)=p$ and $f^{\prime}(a)=0$ then $f^{\prime}(X)=0$. In this case, we can see that $f(X)=h\left(X^{p}\right)$ for some $h(X) \in K[X]$. Let $h(X)=a_{n} X^{n}+\cdots+a_{0}$. Since K is a perfect field of characteristic p there exists $b_{i} \in K$ such that $a_{i}=b_{i}^{p}$ for all $0 \leq i \leq n$. Hence

$$
\begin{aligned}
f(X) & =h\left(X^{p}\right)=a_{n} X^{n p}+\cdots+a_{0} \\
& =b_{n}^{p} X^{n p}+\cdots+b_{0}^{p} \\
& =\left(b_{n} X^{n}+\cdots+b_{0}\right)^{p}
\end{aligned}
$$

But this cannot happen since $f(X)$ is irreducible. Hence $f^{\prime}(a) \neq 0$ and all the roots of f are simple roots.

Corollary 6.8. Every algebraic extension of a perfect field is separable.

Proof. Let L / K be an algebraic extension and K a perfect field. Then every $l \in L$ is algebraic over K. By the previous proposition, we have that the minimal polynomial of l over K has no repeated roots. Hence every element of L is separable over K and L / K is a separable extension.

Theorem 6.9. Let $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be a finite extension of K. Let f_{i} be the minimal polynomial of α_{i} over K. Let $\sigma: K \rightarrow K_{1}$ be an isomorphism of fields and M an extension of K_{1}. Assume that $\bar{\sigma}\left(f_{i}\right)$ splits completely in M for every $1 \leq i \leq n$. Then L / K is separable if and only if the number of embeddings $\tau: L \rightarrow M$ such that $\left.\tau\right|_{K}=\sigma$ is equal to $[L: K]$.

Proof.
\Longrightarrow : Assume that L / K is separable. By Theorem 5.10, we know that the number of embeddings τ such that $\left.\tau\right|_{K}=\sigma$ is less than or equal to $[L: K]$. We must show equality. We first show the result for $K\left(\alpha_{1}\right) / K$. As L / K is separable, the minimal polynomial f_{1} of α_{1} has simple roots. Hence $\bar{\sigma}\left(f_{1}\right)$, which we denote by g_{1}, has simple roots in M. Let $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ be the roots of g_{1} in M. Then $r=\operatorname{deg}\left(g_{1}\right)=\operatorname{deg}\left(f_{1}\right)$. For every $1 \leq j \leq r$, there is an embedding

$$
\tau_{j}=K\left(\alpha_{1}\right) \rightarrow M
$$

such that $\left.\tau_{j}\right|_{K}=\sigma$ and $\tau_{j}\left(\alpha_{1}\right)=\beta_{i}$. Moreover, $\tau_{j} \neq \tau_{j}^{\prime}$ if $j \neq j^{\prime}$. Hence we have $\left[K\left(\alpha_{1}\right): K\right]=\operatorname{deg}\left(f_{1}\right)=r$ embeddings of $K\left(\alpha_{1}\right)$ in M whose restriction to K is σ.
Now assume that the result is true for $K\left(\alpha_{1}, \ldots, \alpha_{s}\right) / K$ for some $1 \leq s<n$. Denote $L_{0}=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Now fix an embedding $\tau: L_{0} \rightarrow M$ such that $\left.\tau\right|_{K}=\sigma$. Let $p(X)$ be the minimal polynomial of α_{s+1} over L_{0}. Then $p(X) \mid f_{s+1}(X)$. Since $f_{s+1}(X)$ has simple roots, $p(X)$ must also have simple roots. Hence $\bar{\tau}(p)$ must have simple roots. As all the roots of $\bar{\tau}\left(f_{s+1}\right)=$ $\bar{\sigma}\left(f_{s+1}\right)$ are in M, all the roots of $\bar{\tau}(p)$ are also in M. Hence by the first part, the number of embeddings $\tau^{\prime}: L_{0}\left(\alpha_{s+1}\right) \rightarrow M$ such that $\left.\tau^{\prime}\right|_{L_{0}}=\tau$ is equal to $\left[L_{0}\left(\alpha_{s+1}\right): L_{0}\right]=\operatorname{deg}(p)$. Hence the number of embeddings $\tau^{\prime}: L_{0} \rightarrow M$ such that $\left.\tau^{\prime}\right|_{K}=\sigma$ is equal to $\left[L_{0}\left(\alpha_{s+1}\right): L_{0}\right]\left[L_{0}: K\right]=\left[L_{0}\left(\alpha_{s+1}\right): K\right]$.
$\Longleftarrow: ~ N o w ~ a s s u m e ~ t h a t ~ t h e ~ n u m b e r ~ o f ~ e m b e d d i n g s ~ \tau: L \rightarrow M$ such that $\left.\tau\right|_{K}=\sigma$ is equal to $[L: K]$. We want to show that L / K is separable.
Consider $l \in L$ and let $f(X) \in K[X]$ be the minimal polynomial of l over K.

Let $g=\bar{\sigma}(f) \in M[X] . f$ has simple roots if and only if g has simple roots. By Theorem 5.10, the number of embeddings

$$
\tau^{\prime}: K(l) \rightarrow M
$$

such that $\left.\tau^{\prime}\right|_{K}=\sigma$ is less than or equal to $[K(l): K]$. Once we fix such a τ^{\prime} and apply Theorem 5.10 again, we get that the number of embeddings

$$
\tau: L \rightarrow M
$$

such that $\left.\tau\right|_{K(l)}=\tau^{\prime}$ is less than or equal to $[L: K(l)]$. Hence the number of

$$
\tau: L \rightarrow M
$$

such that $\left.\tau\right|_{K}=\sigma$ is less than or equal to $[L: K(l)][K(l): K]=[L: K]$. But by hypithesis, this number is equal to $[L: K]$. Hence the number of $\tau^{\prime} \mathrm{s}$ as above should be equal to $[K(l): K]=\operatorname{deg}(f)=\operatorname{deg}(g)$. As each map τ^{\prime} maps l to a root of g and different τ^{\prime} s maps l to distinct roots of g, we have that g has $\operatorname{deg}(g)$ distinct roots in M. Hence all the roots of g are simple which implies that all the roots of f are simple and hence l is separable over K.

Corollary 6.10. Let L / K be a field extension and $l \in L$ separable over K. Then $K(l) / K$ is a separable extension.

Corollary 6.11. Let L / K be a field extension. Then

$$
M=\{l \in L \mid l \text { is separable over } K\}
$$

is a field.
Proposition 6.12. Let $K \subseteq L \subseteq M$ be fields. Then L / K and M / L are separable if and only if M / K is separable.

Proof. $\Longrightarrow: ~ A s s u m e ~ t h a t ~ L / K$ and M / L are separable. Let $m \in M$. We want to show that m is separable over K. Let $p(X)=\sum_{i=0}^{n} l_{i} X^{i} \in L[X]$ be the minimal polynomial of m over L. Let $L_{0}=K\left(l_{1}, \ldots, l_{n}\right)$. Then L_{0} / K is a separable finite extension. Let $M_{0}=L_{0}(m)$. The minimal polynomial of m over L_{0} is $p(X)$. Hence M_{0} / L_{0} is a separable finite extension. Let E be
an extension of K which contains all the conjugates of each l_{i} and m. Then by Theorem 6.9, the number of embeddings

$$
\tau: L_{0} \rightarrow E
$$

such that $\left.\tau\right|_{K}=i d_{K}$ is equal to $\left[L_{0}: K\right]$. Once we fix such an embedding τ, the nunber of embeddings

$$
\tau^{\prime}: M_{0} \rightarrow E
$$

such that $\left.\tau^{\prime}\right|_{L_{0}}=\tau$ is equal to $\left[M_{0}: L_{0}\right]$. Hence the number of embeddings

$$
\tau^{\prime}: M_{0} \rightarrow E
$$

such that $\tau_{K}^{\prime}=i d_{K}$ is equal to $\left[M_{0}: L_{0}\right]\left[L_{0}: K\right]=\left[M_{0}: K\right]$. Hence by Theorem 6.9, we have that M_{0} / K is separable.
$\Longleftarrow: ~ L e t ~ M / K$ be separable. We want to show that L / K and M / L are separable. Since every $l \in L$ is also an element of M, l is separable over K by assumption, hence L / K is separable. Now since every $m \in L$ is separable over K, it must also be separable over L.

Chapter 7

Algebraic Closure and Primitive Element Theorem

Definition 7.1. A field K is called algebraically closed if every polynomial $f(X) \in K[X]$ of degree greater than or equal to 1 has a root in K.

Definition 7.2. Let L / K be a field extension. If L is algebraic over K and is algebraically closed, we say that L is an algebraic closure of K. An algebraic closure of K is denoted by \bar{K}.

Proposition 7.3. Let K be a field. Then there exists a field extension E / K such that E is algebraically closed.

Proof. Let $S=\{f \in K[X] \mid \mathrm{f}$ is irreducible over K$\}$. Let X_{f} be an indeterminant indexed by $f \in S$. Denote $K[S]=K\left[X_{f}: f \in S\right]$ the polynomial ring with infinitely many variables. Now let I be an ideal of $K[S]$ generated by each $f\left(X_{f}\right)$. We claim that I is not the whole ring. Suppose that I is the whole ring. Then $1 \in I$. We therefore have that

$$
1=\sum_{i=1}^{n} g_{i} f_{i}\left(X_{f_{i}}\right)
$$

Rename, for efficiency, $X_{f_{i}}$ to X_{i} and assume that only X_{1}, \ldots, X_{n} appear in the equation. Now let L be a splitting field of $f_{1}\left(X_{1}\right), \ldots, f_{n}\left(X_{n}\right)$ and $\alpha_{i} \in L$ a root of $f_{i}\left(X_{i}\right)$. Setting $X_{i}=\alpha_{i}$ in the equation above, we see that $1=0$, an obvious contradiction. Hence I cannot equal the whole ring.
Now consider \mathfrak{m} a maximal ideal of $K[S]$ containing I. Let $E_{1}=K[S] / \mathfrak{m}$.

Then E_{1} is an extension of K and it contains all roots of any non-constant polynomial in $K[X]$. We can apply the same process to E_{1} to obtain an extension E_{2} / E_{1} wich contains all roots of any non-constant polynomial in $E_{1}[X]$ and so on. We get a sequence of fields

$$
K \subseteq E_{1} \subseteq E_{2} \subseteq \ldots
$$

Letting $E=\bigcup_{i \geq 1} E_{i}$, we see that E has the structure of a field. Consider any non-constant polynomial $f(X) \in E[X]$. Then $f(X) \in E_{n}[X]$ for some n. Hence $f(X)$ has a root in $E_{n+1} \subseteq E$. Thus, E is algebraically closed.
Theorem 7.4. Let K be a field. Then the algebraic closure \bar{K} of K exists.
Proof. Let E / K be the extension constructed in the previous proposition and let $\bar{K}=\{a \in E \mid \mathrm{a}$ is algebraic over K$\}$. Then \bar{K} / K is algebraic. Let $a \in E$ be algebraic over \bar{K} and $f(X)=\min _{a, \bar{K}}(X)$. Let L be a finite extension of K containing $f(X)$ (for example, take L to be the field generated by the coefficients of f). Then a is algebraic over L. Hence $L(a)$ is a finite extension of L and therefore a finite extension of K. Hence a is algebraic over K i.e $a \in \bar{K}$. Therefore, \bar{K} is algebraically closed.

Definition 7.5. Let L / K be a finite extension. Then L / K is called a simple extension if $L=K(\alpha)$ for some $\alpha \in L$. In this case, we say that α is a primitive element.

Proposition 7.6. Let L / K be a finite extension. Then L is simple if and only if there are only finitely many fields F_{i} such that $K \subseteq F_{1} \subseteq \cdots \subseteq F_{n} \subseteq L$ for some $n \in \mathbb{N}$.

Proof. If K is a finite field then since L / K is a finite extension, we see that L is also finite. But then it is obvious that there are only finitely many fields between K and L.
Now since L is finite, it follows that L^{\times}is a finite abelian group. Let m be the lowest common multiple of all elements in L^{\times}. Then $l^{m}=1$ for all $l \in L^{\times}$. Hence all elements of L^{\times}are roots of the polynomial $X^{m}-1$. This polynomial can have at most m roots hence $m \geq\left|L^{\times}\right|$. Now consider the subgroup of L^{\times}generated by some element of order m. By Lagrange's theorem, we have that m divides $\left|L^{\times}\right|$. Hence $m=n$. This implies that L^{\times} is cyclic. Therefore L is generated by a single element which is exactly what it means for L to be simple.
We now assume that K is an infinite field.
\Longrightarrow : Assume that L is simple i.e $L=K(\alpha)$. Let $f(X)$ be the minimal polynomial of α over K. Now let $K \subseteq F \subseteq L$ and $g(X)$ be the minimal polynomial of α over F. Then $g(X) \mid f(X)$. Let F_{0} be the subfield of F generated over K by the coefficients of $g(X)$. Then $L=K(\alpha)=F(\alpha)=$ $F_{0}(\alpha)$ and $g(X)$ is irreducible over F_{0}. Therefore we have that $g(X)=$ $\min _{\alpha, F_{0}}(X)$. Hence $\left[L: F_{0}\right]=[L: F]=\operatorname{deg}(g(X))$ which implies that $F=F_{0}$. We therefore have an injective map between the subfields of L containing K into the set of monic divisors of $f(X)$. Since the latter set is finite, we have that the former set is also finite.
\Longleftarrow : Now suppose that there are only finitely many fields between L and K. We want to show that given any a, b in L, there exists a $\alpha \in L$ such that $K(a, b)=K(\alpha)$. We shall show this by induction.
Assume that $L=K(a, b)$ and consider all fields of the form $K(a+c b)$ for all $c \in K$. Since there are infinitely many elements of L and only finitely many intermediate fields, there must exist distinct elements $c, c^{\prime} \in K$ such that $K(a+c b)=K\left(a+c^{\prime} b\right)$. Let $\alpha_{1}=a+c b$ and $\alpha_{2}=a+c^{\prime} b$. Then $K\left(\alpha_{1}\right)=K\left(\alpha_{2}\right)$ so $\alpha_{2} \in K\left(\alpha_{1}\right)$. Hence $\alpha_{1}-\alpha_{2}=\left(c-c^{\prime}\right) b \in K\left(\alpha_{1}\right)$. Therefore $b \in K\left(\alpha_{1}\right)$ and $\alpha_{1}-c b=\alpha \in K\left(\alpha_{1}\right)$. Thus, $L=K(a+c b)$.
Now assume that the proposition is true for extensions $L=K\left(a_{1}, \ldots, a_{n}\right.$. Consider $L=K\left(a_{1}, \ldots, a_{n+1}\right)$ Then $L=K\left(a_{1}, \ldots, a_{n+1}\right)=K\left(a_{1}, \ldots, a_{n}\right)\left(a_{n+1}\right)$. By the induction hypothesis, we can show that there is an $a \in K\left(a_{1}, \ldots, a_{n}\right)$ such that $K\left(a_{1}, \ldots, a_{n}\right)=K(a)$. Hence we have that $L=K(a)\left(a_{n+1}\right)=$ $K\left(a, a_{n+1}\right)$. By the basis case, we can find a $b \in K\left(a, a_{n+1}\right)$ such that $K\left(a, a_{n+1}\right)=K(b)$. hence $L=K(b)$ and L is a simple extension.

Theorem 7.7. (Primitive Element Theorem)
Let L / K be a finite separable extension. Then L is a simple extension of K.
Proof. If K is finite then, from the previous proposition, we have that L / K is simple and we are done. Hence assume that K is infinite. It suffices to consider the case when $L=K(a, b)$ and the generalisation will follow from induction.
Let $n=[L: K]$. Then since L / K is a separable extension, we have that there exists n distinct K-embeddings of L into \bar{K}. Now suppose that there exists $c \in L$ such that $L=(a+c b)$. Then $a+c b$ must have n distinct conjugates which are exactly the images of $a+c b$ under the action of the $n K$-embeddings of L. We denote these embeddings by $\sigma_{1}, \ldots, \sigma_{n}$. These
embeddings map $a+c b$ to the roots of the polynomial $p(x)=\min _{a+c b, K}(X)$ in \bar{K}. Hence $a+c b$ is a primitive element if and only if there exists $n K$ embeddings of L such that $\sigma_{i}(a+c b) \neq \sigma_{j}(a+c b)$ for all $i \neq j$. This is equivalent to saying that

$$
\prod_{i \neq j}^{n}\left(\sigma_{i}(a)-\sigma_{j}(a)-c\left(\sigma_{i}(b)-\sigma_{j}(b)\right) \neq 0\right.
$$

Now this is equivalent to saying that c is not a root of the following polynomial

$$
f(X)=\prod_{i \neq j}^{n}\left(\sigma_{i}(a)-\sigma_{j}(a)-X\left(\sigma_{i}(b)-\sigma_{j}(b)\right)\right.
$$

Since K is infinite and $f(X)$ has finitely man roots, we can easily find such a c. Hence $a+c b$ is a primitive element and thus $L=(a+c b)$.

Chapter 8

Normal Extensions

Definition 8.1. Let L / K be a field extension. Then L / K is called normal if it is algebraic and for every $l \in L$, the minimal polynomial of l over K splits completely over L.
Example 8.2. $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is normal.
Proposition 8.3. Let K be a field and $f(X) \in K[X]$. Then a splitting field of f is a normal extension of K.

Proof. Let L be a splitting field of f and $\alpha_{1}, \ldots, \alpha_{r}$ the roots of f. Hence $L=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. Let $l \in L$ and $p(X)$ be the minimal polynomial of l over K. Let M be a splitting field of $p(X)$ over L. Let $l^{\prime} \in M$ be a root of $p(X)$. We must show that $l^{\prime} \in L$. There is a unique isomorphism

$$
\tau: K(l) \rightarrow K\left(l^{\prime}\right)
$$

such that $\tau(l)=l^{\prime}$ and $\left.\tau\right|_{K}=i d_{K}$. By Artin's Extension Theorem, we may extend τ to $\tau^{\prime}: L \rightarrow M$ such that $\left.\tau^{\prime}\right|_{K(l)}=\tau$. We can find such an extension as follows.
Assume that we have an extension $\tau^{\prime}: K\left(l, \alpha_{1}, \ldots, \alpha_{n}\right) \rightarrow M$ for some $1 \leq$ $s<r$. Let $g(X)$ be the minimal polynomial of α_{s+1} over $K\left(l, \alpha_{1}, \ldots, \alpha_{s}\right)$. Then $g(X) \mid f(X)$ and hence $\bar{\tau}^{\prime}(g) \mid \bar{\tau}^{\prime}(f)=f$. Since f splits completely in L, so does $\bar{\tau}(g)$. Let α_{s+1}^{\prime} be a root of $\bar{\tau}(g)$ in M. Then there is an extension

$$
\tau^{\prime \prime}: K\left(l, \alpha_{1}, \ldots, \alpha_{s+1}\right) \rightarrow M
$$

such that $\left.\tau^{\prime \prime}\right|_{K\left(l, \alpha_{1}, \ldots, \alpha_{s+1}\right)}=\tau^{\prime}$ and $\tau^{\prime \prime}\left(\alpha_{s+1}\right)=\alpha_{s+1}^{\prime}$.
We therefore have an embedding $\tau^{\prime}: L \rightarrow M$ such that $\left.\tau^{\prime}\right|_{K}=i d_{K}$ and
$\tau^{\prime}(l)=l^{\prime}$. We now claim that $\tau^{\prime}(L)=L$. Noote that τ^{\prime} is determined by where it sends α_{i} 's. $\tau^{\prime}\left(\alpha_{i}\right)$ must be a root of $\bar{\tau}^{\prime}(f)=f$. Hence $\tau^{\prime}\left(\alpha_{i}\right) \in$ $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ for each i. Hence $\tau^{\prime}(L) \subseteq L$ and by Proposition 5.6 $\tau^{\prime}(L)=L$. Hence $l^{\prime} \in L$ and $p(X)$ splits completely in L.

Theorem 8.4. Let L / K be an algebraic extension. Then L / K is normal if and only if for any extension M of L and for any K-embedding, $\tau: L \rightarrow M$ maps L to itself.
Proof.
\Longrightarrow : Assume that L / K is normal and let $\tau: L \rightarrow M$ be an embedding. Let $l \in L$ and $f(X) \in K[X]$ be the minimal polynomial of l over K. Then L contains all the roots of $f(X)$. Also note that $\tau(l)$ is a root of $\bar{\tau}(f)=f$. Hence $\tau(l) \in L$. Now by Proposition 5.6, $\tau(L)=L$.
$\Longleftarrow: ~ A s s u m e ~ t h a t ~ f o r ~ a n y ~ e x t e n s i o n ~ M ~ o f ~ L ~ a n d ~ a n y ~ K-e m b e d d i n g, ~$ $\tau: L \rightarrow M$ maps L to itself. We take M to be an algebraic closure of K. Let l in L and $f(X) \in K[X]$ be the minimal polynomial of l over K. We must show that $f(X)$ splits completely in L. Let $l^{\prime} \in \bar{K}$ be a root of $f(X)$. Then by Artin's Extension Theorem, there is a unique ismorphism $\tau: K(l) \rightarrow K\left(l^{\prime}\right)$ such that $\left.\tau\right|_{K}=i d_{K}$ and $\tau(l)=l^{\prime}$. We claim that we can extend τ to an embedding $\tau^{\prime}: L \rightarrow M$. Let E be the maximal subfield of L containing $K(l)$ such that τ can be extended to an embedding $\tau^{\prime}: E \rightarrow \bar{K}$. If $E \neq L$, take $\alpha \in L-E$ and let $p(X)$ be the minimal polynomial of α over K. Then $p(X)$ splits completely in \bar{K}. Let $g(X)$ be the minimal polynomial of α over E. Then $\bar{\tau}^{\prime}(g)$ splits completely in \bar{K}. Let $\alpha^{\prime} \in \bar{K}$ be a root in $\bar{\tau}^{\prime}(g)$. Then by Artin's Extension Theorem, we get

$$
\tau^{\prime \prime}: E(\alpha) \rightarrow \tau^{\prime}(E)\left(\alpha^{\prime}\right) \subseteq \bar{K}
$$

such that $\left.\tau^{\prime \prime}\right|_{E}=\tau^{\prime}$ i.e we get an extension of τ to $E(\alpha)$. By maximality of E, $\alpha \in E$ which is a contradiction. Hence $E=L$. As $\tau(L)=L$ by hypothesis, we get $\tau(l)=l^{\prime} \in L$.

Proposition 8.5. Let $K \subseteq L \subseteq M$ be fields. If M / K is normal then so is M / L. Let $f(X) \in L[X]$ be an irreducible polynomial with a root $l \in M$. Let $g(X) \in K[X]$ be the minimal polynomial of l over K. Then $f(X) \mid g(X)$. As M / K is normal, g splits completely in $M[X]$. Hence $f(X)$ splits completely in $M[X] /$

Chapter 9

Galois Extensions

Definition 9.1. A field extension L / K is called Galois if it is normal and separable. The group $A^{\prime} t_{K}(L)$ of K-automorphisms of L is called the Galois group of L / K and is denoted by $\mathbf{G a l}(\mathbf{L} / \mathbf{K})$.

Proposition 9.2. Let $K \subseteq L \subseteq M$ be fields. If M / K is a Galois extension then so is M / L.

Definition 9.3. Let L / K be an extension and let H a subgroup of $\operatorname{Gal}(L / K)$. Then the fixed field of H in L is defined to be

$$
L^{H}:=\{l \in L \mid h(l)=l \forall h \in H\}
$$

Remark. Clearly, L^{H} is an intermediate extension of L / K and L / L^{H} is a galois extension.

Chapter 10

Fundamental Theorem of Galois Theory

Lemma 10.1. (Zorn's Lemma)
Let S be a non-empty partially ordered set. Assume that every chain in S has an upper bound i.e if $s_{1} \leq s_{2} \leq \ldots$ is a chain in S then there exists $s \in S$ such that $s_{i} \leq s$ for all i. Then S has a maximal element, say s, such that there is no $s^{\prime} \in S$ with $s<s^{\prime}$.

Proposition 10.2. Let L / K be a normal extension. Let $K \subseteq M \subseteq L$ be an intermediate extension. Then any K-embedding $\tau: M \rightarrow L$ can be extended to a K-automorphism of L.

Proof. Assume that E is the maximal extension of M contained in L such that τ extends to an embedding of $\tau^{\prime}: E \rightarrow L$. The existence of such an extension is guaranteed by Zorn's Lemma as follows.
Let S be the set of all pairs (E, τ^{\prime}) such that $M \subseteq E \subseteq L$ is an intermediate extension and $\tau^{\prime}: E \rightarrow L$ is an embedding such that $\left.\tau^{\prime}\right|_{M}=\tau$. Then S is non-empty because $(M, \tau) \in S$. The partial ordering on S is given as follows

$$
\left(E_{1}, \tau_{1}^{\prime}\right) \leq\left(E_{2}, \tau_{2}^{\prime}\right)
$$

if

$$
E_{1} \subseteq E_{2},\left.\tau_{2}^{\prime}\right|_{E_{1}}=\tau_{1}^{\prime}
$$

Let $\left\{\left(E_{i}, \tau_{i}^{\prime}\right)\right\}$ be a chain in S. Let $E=\bigcup_{i} E_{i}$. There is an embedding $\tau^{\prime}: E \rightarrow L$, defined as $\tau^{\prime}(e)=\tau_{i}^{\prime}(e)$ if $e \in E_{i}$. With this definition, $\left(E, \tau^{\prime}\right)$ is
an upper bound of the chain. Hence S has a maximal element.
We now claim that $E=L$. Let $\alpha \in L$ and consider $E(\alpha)$. Let $p(X) \in K[X]$ be the minimal polynomial of α in K and let $f(X) \in E[X]$ be the minimal polynomial of α over E. Since L / K is normal, L / E is also normal and hence both $p(X)$ and $f(X)$ split completely over L. We note that $\bar{\tau}^{\prime}(f) \mid p(X)$ and hence $\bar{\tau}^{\prime}(f)$ splits completely in L. Let $\alpha^{\prime} \in L$ be any root of $\bar{\tau}^{\prime}(f)$. By Artin's Extension Theorem, τ^{\prime} extends to an isomorphism

$$
\tau^{\prime \prime}: E(\alpha) \rightarrow \tau^{\prime}(E)\left(\alpha^{\prime}\right) \subseteq L
$$

As $\left.\tau^{\prime \prime}\right|_{M}=\tau^{\prime} \mid M=\tau$, by maximality of $E, E=E(\alpha)$. Hence $\alpha \in L$. Since α was an arbitrary element of $L, L \subseteq E$. Hence $L=E$ and we are done.

Proposition 10.3. Let L be a field and G the group of automorphisms of L. Consider the fixed field $K=L^{G}$. Then L / K is Galois with $G a l(L / K)=G$ and thus $[L: K]=|G|$

Proof. Let $\alpha \in L$. We find a seperable polynomial in $K[X]$ with α as one of its roots. Let $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ be a maximal set of elements of G such that $\sigma_{1}(\alpha), \ldots, \sigma_{r}(\alpha)$ are all distinct. Then for any $\tau \in G$

$$
\left(\tau \sigma_{1}(\alpha), \ldots, \tau \sigma_{r}(\alpha)\right)
$$

is a permutation of

$$
\left(\sigma_{1}(\alpha), \ldots, \sigma_{r}(\alpha)\right)
$$

Indeed, if it is not a permutation then the maximality of $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ is contradicted.
Now consider the polynomial

$$
f(X)=\prod_{i=1}^{r}\left(X-\sigma_{i}(\alpha)\right)
$$

It is obviously seperable as each $\sigma_{i}(\alpha)$ is distinct and has α as a root since G is a group and hence one of the σ_{i} must be the identity mapping. We can also see that given any $\tau \in G, \bar{\tau}(f)=f$. Therefore $f(X) \in K[X]$. Hence every $\alpha \in L$ is a root of a seperable polynomial of degree less than or equal to $|G|$ over K meaning that L is seperable. Moreover, these polynomials obviously split completely over L and hence L is a normal extension. Therefore, L / K
is a Galois extension.
We now show that $[L: K]=|G|$. Let $n=|G|$ and $G=\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$. Assume that $\left\{l_{1}, \ldots, l_{n+1}\right\} \subseteq L$ is linearly independent over K. Now consider the system of equations

$$
\begin{align*}
& \sigma_{1}\left(l_{1}\right) X_{1}+\cdots+\sigma_{1}\left(l_{n+1}\right) X_{n+1}=0 \tag{10.1}\\
& \vdots \\
& \sigma_{n}\left(l_{1}\right) X_{1}+\cdots+\sigma_{n}\left(l_{n+1}\right) X_{n+1}=0
\end{align*}
$$

Assume that $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}, 0, \ldots, 0\right)$ is a solution of these equations with minimal r and fix $\sigma \in G .\left(\sigma \sigma_{1}, \ldots, \sigma \sigma_{n}\right)$ is just a permutation of $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. Therefore the system of equations

$$
\begin{aligned}
& \sigma \sigma_{1}\left(l_{1}\right) \sigma\left(\alpha_{1}\right)+\cdots+\sigma \sigma_{1}\left(l_{r}\right) \sigma\left(\sigma_{r}\right)=0 \\
& \vdots \\
& \sigma \sigma_{n}\left(l_{1}\right) \sigma\left(\alpha_{1}\right)+\cdots+\sigma \sigma_{n}\left(l_{r}\right) \sigma\left(\alpha_{r}\right)=0
\end{aligned}
$$

can be written, up to permutation of the equations, as

$$
\begin{align*}
& \sigma_{1}\left(l_{1}\right) \sigma\left(\alpha_{1}\right)+\cdots+\sigma_{1}\left(l_{r}\right) \sigma\left(\sigma_{r}\right)=0 \tag{10.2}\\
& \quad \vdots \\
& \sigma_{n}\left(l_{1}\right) \sigma\left(\alpha_{1}\right)+\cdots+\sigma_{n}\left(l_{r}\right) \sigma\left(\alpha_{r}\right)=0
\end{align*}
$$

Let $(10.1)(\vec{\alpha})$ denote the equations in (10.1) evaluated at $\vec{\alpha}$ then taking $\alpha_{r}(10.2)-\sigma\left(\alpha_{r}\right)(1)(\vec{\alpha})$

$$
\begin{aligned}
& \sigma_{1}\left(l_{1}\right)\left(\alpha_{r} \sigma\left(\alpha_{1}\right)-\alpha_{1} \sigma\left(\alpha_{r}\right)\right)+\cdots+\sigma_{1}\left(l_{r-1}\right)\left(\alpha_{r} \sigma\left(\alpha_{r-1}\right)-\alpha_{r-1} \sigma\left(\alpha_{r}\right)\right)=0 \\
& \quad \vdots \\
& \sigma_{n}\left(l_{1}\right)\left(\alpha_{r} \sigma\left(\alpha_{1}\right)-\alpha_{1} \sigma\left(\alpha_{r}\right)\right)+\cdots+\sigma_{n}\left(l_{r-1}\right)\left(\alpha_{r} \sigma\left(\alpha_{r-1}\right)-\alpha_{r-1} \sigma\left(\alpha_{r}\right)\right)=0
\end{aligned}
$$

This is a solution of (10.1) with fewer non-zero terms. Therefore, all the terms must be zero. We thus have that $\alpha_{r} \sigma\left(\alpha_{i}\right)=\alpha_{i} \sigma\left(\alpha_{r}\right)$ for all $i \leq r-1$. This is equivalent to having $\sigma\left(\alpha_{i} \alpha_{r}^{-1}\right)=\alpha_{i} \alpha_{r}^{-1}$ for all $i \leq r-1$.
Now since σ is an arbitrary K-automorphism in G, we must have that $m_{i}:=$ $\alpha_{i} \alpha_{r}^{-1} \in K$ for all $i \leq r-1$. Hence $\alpha_{i}=m_{i} \alpha_{r}$ for all $i \leq r$. Then equation
(10.1), evaluated at $\vec{\alpha}$ gives

$$
\begin{aligned}
0 & =\sigma_{1}\left(l_{1}\right) \alpha_{1}+\cdots+\sigma_{1}\left(l_{r}\right) \alpha_{r} \\
& =\left(\sigma\left(l_{1}\right) m_{1}+\cdots+\sigma_{1}\left(l_{r}\right) m_{r}\right) \alpha_{r} \\
& =\sigma_{1}\left(l_{1} m_{1}+\cdots+l_{r} m_{r}\right) \alpha_{r}
\end{aligned}
$$

Since α_{r} is not 0 by construction, we must have that $\sigma_{1}\left(l_{1} m_{1}+\cdots+l_{r} m_{r}\right)=0$. Now since σ is an isomorphism, its kernel is trivial hence $l_{1} m_{1}+\cdots+l_{r} m_{r}=0$. But this is a contradiction to the assumption that $\left\{l_{1}, \ldots, l_{r}\right\}$ are linearly independent over K. Hence $[L: K] \leq n$.
Now Theorem 5.10 implies that $[L: K] \geq n$. Thus we must have that $[L: K]=n$.

Theorem 10.4. (Fundamental Theorem of Galois Theory for Finite Extensions)
Let L / K be a finite Galois extension, H a subgroup of $G a l(L / K)$ and E and intermediate field of L / K. Then

1. the maps

$$
\begin{aligned}
& H \mapsto L^{H} \\
& E \mapsto \operatorname{Gal}(L / E)
\end{aligned}
$$

are mutually inverse, inclusion reversing bijections between the subgroups of $\operatorname{Gal}(L / K)$ and the intermediate fields of L / K.
2. L^{H} / K is Galois if and only if H is a normal subgroup of $\operatorname{Gal}(L / K)$. In this case, the restriction map

$$
\begin{aligned}
\operatorname{Gal}(L / K) & \rightarrow G a l\left(L^{H} / K\right) \\
\sigma & \left.\mapsto \sigma\right|_{L^{H}}
\end{aligned}
$$

induces an isomorphism of groups $\operatorname{Gal}(L / K) / H \rightarrow \operatorname{Gal}\left(L^{H} / K\right)$.
Proof. Part 1: We first show that the mappings are inclusion reversing. Let $K \subseteq F_{1} \subseteq F_{2} \subseteq L$ and $G_{i}=\operatorname{Gal}\left(L / F_{i}\right)$. If $\sigma \in G_{2}$ then σ fixes F_{2}. Since $F_{1} \subseteq F_{2}$, we have that σ fixes F_{1} and hence $\sigma \in G_{1}$.
Now let $H_{1} \subseteq H_{2} \subseteq G a l(L / K)$ and $F_{i}=L^{H_{i}}$. If $x \in F_{2}$ then $\sigma(x)=x$ for all $\sigma \in H_{2}$. Since $H_{1} \subseteq$, we have that $\sigma(x)=x$ for all $x \in H_{1}$. Hence $x \in F_{1}$. Therefore the maps are inclusion reversing.

We now show that the map $E \mapsto G a l(L / E)$ is injective. Let $G=G a l(L / K)$. We shall first prove that $L^{G}=K$. It is clear that $K \subseteq L^{G}$. Let $\alpha \in L^{G}$ and consider the extension $K(\alpha) / K$. Let $f(X) \in K[X]$ be the minimal polynomial of α over K. Since L is normal, $f(X)$ splits completely in $L[X]$ and since it is also seperable, all the roots of f are simple roots. If $\operatorname{deg}(f)>1$ then let $\alpha^{\prime} \neq \alpha$ be another root of $f(X)$. Then there is a K-isomorphism

$$
\tau: K(\alpha) \rightarrow K\left(\alpha^{\prime}\right)
$$

Since L is a normal extension of K containing both $K(\alpha)$ and $K\left(\alpha^{\prime}\right)$, this isomorphism τ can be etended to a K-automorphism, say τ^{\prime}, of L. Hence τ^{\prime} is an element of G. Since $\alpha \in L^{G}, \alpha=\tau^{\prime}(\alpha)=\tau(\alpha)$. But $\tau(\alpha)=$ α^{\prime} by construction. By asssumption, $\alpha \neq \alpha^{\prime}$ hence this is a contradiction and $\operatorname{deg}(f)=1$ and $a \in K$. Hence $L^{G}=K$. Now let E and E^{\prime} be two intermediate fields of L / K such that $H:=\operatorname{Gal}(L / E)=\operatorname{Gal}\left(L / E^{\prime}\right)=: H^{\prime}$. By the result we have just shown, we have that $E=L^{H}=L^{H^{\prime}}=E^{\prime}$. Therefore $E \mapsto \operatorname{Gal}(L / E)$ is an injective mapping.
We now show that $E \mapsto \operatorname{Gal}(L / E)$ is a surjective mapping. We have to prove that for every subgroup of the Galois group of L / K, there exists a fixed field of L / K that maps to it. Let $H \subseteq G$ be a subgroup of the Galois group of L / K. Then by Proposition $10.4, L / L^{H}$ is a Galois extension with Galois group H. Hence the mapping $E \mapsto G a l(L / E)$ is surjective.

Part 2:
\Longrightarrow : Now assume that L^{H} / K is a Galois extension. Then the restriction map

$$
\begin{aligned}
\phi: \operatorname{Gal}(L / K) & \rightarrow G a l\left(L^{H} / K\right) \\
\sigma & \left.\mapsto \sigma\right|_{L^{H}}
\end{aligned}
$$

induces a group homomorphism.
Since L is a normal extension, any automorphism of L^{H} can be extended to an automorphism of L. This implies that the map is surjective. Now

$$
\operatorname{ker}(\phi)=\left\{\sigma \in \operatorname{Gal}(L / K)|\sigma|_{L^{H}}=i d\right\}
$$

Hence the kernel is comprised of all those automorphisms that, when restricted to L^{H} are just the identity automorphism. Bu this is exactly H.

Since H is the kernel of a group homomorphism on $\operatorname{Gal}(L / K), H$ must be a normal subgroup.
$\Longleftarrow: ~ N o w ~ a s s u m e ~ t h a t ~ L^{H}$ is not Galois over K. Then there exists an automorphism of L, say σ, such that $\sigma\left(L^{H}\right) \neq L^{H}$. Indeed, if there did not exist such an automorphism, then Theorem 8.4 would imply that L^{H} is normal over K and hence Galois.
We claim that $\sigma H \sigma^{-1} \neq H$. To show this, we need to prove that $L^{\sigma H \sigma^{-1}}=$ $\sigma\left(L^{H}\right)$.
Let $Z=\sigma\left(L^{H}\right)$ and $x \in Z$. Then $x=\sigma(y)$ for some $y \in L^{H}$. Now

$$
\begin{aligned}
\left(\sigma \phi \sigma^{-1}\right)(x) & =\sigma \phi(y) \\
& =\sigma(y) \\
& =x
\end{aligned}
$$

for all $\phi \in H$. Hence x is also fixed by $\sigma \phi \sigma^{-1}$ and therefore $x \in L^{\sigma H \sigma^{-1}}$. Thus we have that $\sigma\left(L^{H}\right) \subseteq L^{\sigma H \sigma^{-1}}$.
Now let $x \in L^{H}$. We have that $x=\sigma^{-1}(y)$ for some $y \in Z$. Therefore

$$
\begin{aligned}
\left(\sigma^{-1} \phi^{\prime} \sigma\right)(x) & =\sigma^{-1} \phi^{\prime}(y) \\
& =\sigma^{-1}(y) \\
& =x
\end{aligned}
$$

for all ϕ^{\prime} in H^{\prime}, the Galois group of Z. Therefore $H \subseteq \sigma H^{\prime} \sigma^{-1}$ and thus $\sigma H \sigma^{-1} \subseteq H^{\prime}$. It hence follows that $L^{\sigma H \sigma^{-1}} \subseteq L^{H^{\prime}}=\sigma\left(L^{H}\right)$. We can now see that $\sigma\left(\overline{L^{H}}\right)=L^{\sigma H \sigma^{-1}}$.
Now assume that H is normal so that $\sigma H \sigma^{-1}=H$. By what we have just proved, this implies that $\sigma\left(L^{H}\right)=L^{H}$. But this is a contradiction and we hence see that H is not a normal subgroup.

Definition 10.5. Let $f(X) \in K[X]$. We define the Galois group of $f(X)$ over K to be

$$
\operatorname{Gal}(f / K)=\operatorname{Gal}\left(K_{f} / K\right)
$$

where K_{f} is a splitting field of $f(X)$ over K.
Definition 10.6. Let $r>0$. We denote the group of permutations on r elements by S_{r}. We say that a subgroup of S_{r} is transitive if it acts transitively on the set of r elements.

Example 10.7. $\{(1),(1,2)(3,4),(1,3)(2,4),(1,4),(2,3)\}$ is a transitive subgroup of S_{4}.

Proposition 10.8. Let $f(X) \in K[X]$ be a polynomial with r distinct roots. Then $G a l(f / K)$ is isomorphic to a subgroup of of S_{r} and hence the order of $\operatorname{Gal}(f / K)$ divides r !. Moreover, if f is irreducible over K then $\operatorname{Gal}(f / K)$ is a transitive subgroup of S_{r}.

Proof. Let L be a splitting field of f over K and l_{1}, \ldots, l_{r} be roots of f. Then $L=K\left(l_{1}, \ldots, l_{r}\right)$. A K-automorphism of L is determined by the images of the l_{i} 's. Such an automorphism must map a root of f to a root. Hence a K-automorphism of L permutes elements of the set l_{1}, \ldots, l_{r}. Hence we get an injection of $G a l(f / K)$ into S_{r}.
Now assume that f is irreducible over K. Then for any $1 \leq i \leq r$, there is a K-isomorphism

$$
K\left(l_{1}\right) \rightarrow K\left(l_{i}\right)
$$

By Proposition 10.2, this can be extended to an automorphism of L and hence to an element of $\operatorname{Gal}(f / K)$. Therefore, $\operatorname{Gal}(f / K)$ is a transitive subgroup of S_{r}.

Chapter 11

Cubic Polynomials

Let $f(X) \in K[X]$ be a cubic polynomial. Then $G a l(f / K)$ is a subgroup of S_{3}. S_{3} has 6 subgroups, namely

- $\{(1)\}$
- $\{(1),(1,2)\}$
- $\{(1),(1,3)\}$
- $\{(1),(2,3)\}$
- $\{(1),(1,2,3),(1,3,2)\}$
- $\{(1),(1,2),(1,3),(2,3),(1,2,3),(1,3,2)\}$

If $f(X)$ splits completely over K then $G a l(f / K)=\{(1)\}$. If $f(X)$ is reducible over K but does not split completely then $\operatorname{Gal}(f / K)$ is isomorphic to the cyclic group of order 2 .
If $\operatorname{Gal}(f / K) \cong S_{3}$ then by the fundamental theorem of Galois Theory, there exists a field extension M such that $K \subseteq M \subseteq L$ and $G a l(M / K) \cong C_{3}$. We have that $M=K(\delta)$ where $\delta \in L$. Even permutations of S_{3} fix δ and odd permutations send δ to $-\delta$. If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the roots of f then

$$
\delta=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)
$$

If f is irreducible over K then $\operatorname{Gal}(f / K)$ is S_{3} if and only if $\delta \notin K$.

Definition 11.1. Let $f(X) \in K[X]$ be a cubic polynomial and $\alpha_{1}, \alpha_{2}, \alpha_{3}$ its roots in a splitting field over K. Then we define the descriminant D of f as

$$
D=\delta^{2}=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{2}-\alpha^{3}\right)\left(\alpha_{3}-\alpha_{1}\right)^{2}
$$

Suppose that $\sqrt{D} \in K$. Then any element of $\operatorname{Gal}(f / K)$ must fix \sqrt{D}. But a transposition of two roots does not fix $\sqrt{D} . S_{3}$ contains exactly 3 such permutations (namely the cyclic groups of order 2). Therefore $\operatorname{Gal}(f / K) \cong$ S_{3} if and only if D is not a square in K. If $f(X)=X^{3}+a X+b$ then

$$
D=-4 a^{3}-27 b^{2}
$$

If $f(X)=X^{3}+a_{2} X^{2}+a_{1} X+a_{0}$ and $\operatorname{char}(K) \neq 3$ then we can eliminate the quadratic term with the change of variable $Y=X-\frac{a_{2}}{3}$.
Example 11.2. Consider the polynomial $f(X)=X^{3}+2 \in \mathbb{Q}[X]$. By Eisenstein's Criterion, we have that the prime number 2 divies every coefficient except the leading one and $2^{2}=4 \not \backslash a_{0}=2$ hence $f(X)$ is irreducible over \mathbb{Q}. It's Galois group $G a l(f / \mathbb{Q})$ is hence either S_{3} or C_{3}. The descriminant of $f(X)$ is $D=-27 \cdot 2^{2}$. This is not a square in \mathbb{Q} and hence the Galois group is S_{3}.
We shall now describe all intermediate extensions of \mathbb{Q} and the splitting field of f.
Let L be a splitting field of f over \mathbb{Q}. Since $\operatorname{Gal}(L / \mathbb{Q})=S_{3}$, we have that there are 3 intermediate extensions of degree 3 and one of degree 2.
The intermediate field of degree 2 is fixed by $C_{3} \subseteq S_{3}$. Since C_{3} is a normal subgroup of S_{3}, we have that the intermediate field $L^{C_{3}}$ is Galois over \mathbb{Q}. The other extensions are not normal subgroups of S_{3} and hence none of their corresponding fixed fields are Galois over \mathbb{Q}. We obtain the following lattice diagrams

We can write α_{2} and α_{3} in terms of \sqrt{D} and α_{1}. Note that

$$
f(X)=\left(X-\alpha_{1}\right) g(X)
$$

where

$$
g(X)=X^{2}+\alpha_{1} X+\alpha_{1}^{2}+a
$$

We thus see that $\alpha_{2}, \alpha_{3}=\frac{-\alpha_{1} \pm \sqrt{\operatorname{disc}(g)}}{2}$. It is easily shown that $\operatorname{disc}(g)=$ $\left(\alpha_{2}-\alpha_{3}\right)^{2}$. Another calculation shows that $D=\operatorname{disc}(f)=g\left(\alpha_{1}\right)^{2} \operatorname{disc}(g)$.

Example 11.3. Consider the polynomial $f(X)=X^{3}+X+1$ over the rational numbers. The image of $f(X)$ under the map

$$
\begin{aligned}
\sigma: \mathbb{Q}[X] & \rightarrow \mathbb{F}_{2}[X] \\
f(X) & \mapsto f(X) \quad(\bmod 2)
\end{aligned}
$$

has no roots in \mathbb{F}_{2} and is hence irreducible over this field. We therefore have that $f(X)$ is irreducible over the \mathbb{Z} and, by Gauss' Lemma, irreducible over \mathbb{Q}.
The discriminant of $f(X)$ is given by

$$
D=-4-27=-31
$$

This is not a square in the rational numbers. Hence $\operatorname{Gal}(f / \mathbb{Q})=S_{3}$.
Example 11.4. Consider the polynomial $f(X)=X^{3}-X^{2}-2 X+1$ over the rational numbers. By argumentation similar to the previous example, we can see that $f(X)$ is irreducible over \mathbb{F}_{2} and thus over \mathbb{Z}. By Gauss' Lemma,
$f(X)$ is irreducible over \mathbb{Q}.
By making the linear change of variable $X=X+\frac{1}{3}$ to get the polynomial $g(X)=X^{3}-\frac{7}{3} X+\frac{7}{27}$, we can see that the discriminant is

$$
\begin{aligned}
D & =-4 \cdot\left(\frac{-7}{3}\right)^{3}-27 \cdot\left(\frac{7}{27}\right)^{2} \\
& =4 \cdot \frac{7^{3}}{27}-\frac{7^{2}}{27} \\
& =7^{2}\left(\frac{28 / 27}{-} \frac{1}{27}\right) \\
& =7^{2}
\end{aligned}
$$

Hence D is a square in \mathbb{Q} and $\operatorname{Gal}(f / \mathbb{Q}) \cong A_{3}$.

Chapter 12

Symmetric Polynomials

Definition 12.1. Let $X_{1}, \ldots X_{n}$ be variables. We define the elementary symmetric functions in X_{i} to be

$$
\begin{aligned}
& s_{1}=X_{1}+X_{2} \cdots+X_{n} \\
& s_{2}=X_{1} X_{2}+X_{1} X_{3}+\cdots+X_{n-1} X_{n}=\sum_{i<j} X_{i} X_{j} \\
& s_{3}=\sum_{i<j<k} X_{i} X_{j} X_{k} \\
& \quad \vdots \\
& s_{n}
\end{aligned}=X_{1} X_{2} \ldots X_{n}
$$

Obviously S_{n} acts on X_{1}, \ldots, X_{n}. This action can be extended to an action on the polynomial ring $R\left[X_{1}, \ldots, X_{n}\right]$ for any ring R. Let $f \in$ $R\left[X_{1}, \ldots, X_{n}\right]$ and $\sigma \in S_{n}$. Then

$$
\sigma(f)\left(X_{1}, \ldots, X_{n}\right)=f\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

Example 12.2. Let $f\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{2}^{2} X_{3}^{2}$ and $\sigma=(123) \in S_{3}$. Then $\sigma(f)\left(X_{1}, X_{2}, X_{3}\right)=X_{2} X_{3}+X_{3}^{2} X_{1}^{2}$.

Definition 12.3. We say that a polynomial $f\left(X_{1}, \ldots, X_{n}\right) \in R\left[X_{1}, \ldots, X_{n}\right]$ is a symmetric polynomial if $\sigma(f)=f$ for all $\sigma \in S_{n}$.

Definition 12.4. We say that a polynomial $f\left(X_{1}, \ldots, X_{n}\right) \in R\left[X_{1}, \ldots, X_{n}\right]$ is a partially symmetric polynomial with respect to H if $\sigma(f)=f$ for all $\sigma \in H$ for some $H \subseteq S_{n}$.

Example 12.5.

$$
f\left(X_{1}, \ldots, X_{n}\right)=\prod_{1 \leq i \leq j \leq n}\left(X_{i}-X_{j}\right)
$$

is partially symmetric with respect to the subgroup $A_{n} \subseteq S_{n}$.

Example 12.6.

$$
f\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{1} X_{3}+X_{2} X_{4}
$$

is partially symmetric with respect to the subgroup $D_{4} \subseteq S_{4}$.
Theorem 12.7. Any symmetric polynomial in X_{1}, \ldots, X_{n} can be uniquely expressed in terms of elementary symmetric polynomials.

Example 12.8. $X_{1}^{2}+X_{2}^{2}+X_{3}^{2}=s_{1}^{2}-2 s_{2}$
Corollary 12.9. The ring $R\left[s_{1}, \ldots, s_{n}\right]$ is isomorphic to the polynomial ring in n variables over R.

Definition 12.10. A rational function $f \in K\left(X_{1}, \ldots, X_{n}\right)$ is symmetric if $\sigma(f)=f$ for all $\sigma \in S_{n}$.

Corollary 12.11. A symmetric rational function can be uniquely expressed as a rational function in s_{1}, \ldots, s_{n}.

Corollary 12.12. Let K be a field, $M=K\left(X_{1}, \ldots, X_{n}\right)$ and $L=K\left(s_{1}, \ldots, s_{n}\right)$. Then M / L is Galois with $\operatorname{Gal}(M / L) \cong S_{n}$.

Definition 12.13. Let $f \in K[X]$ be a polynomial of degree n with roots $\alpha_{1}, \ldots, \alpha_{n}$. Then we define the descriminant of f by

$$
D=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

Remark. The polynomial $\prod_{i<j}\left(X_{i}-X_{j}\right)^{2}$ is symmetric meaning D is fixed by all $\sigma \in S_{n}$. It is clear that D is non-zero if and only if f is a seperable polynomial. We can also see that $D \in K$.

Chapter 13

Quartic equation

Let $f(X) \in K[X]$ be a quartic polynomial. Then $\operatorname{Gal}(f / K)$ is a subgroup of S_{4}. S_{4} has 24 subgroups, namely

- Isomorphic to $C_{1}:\{(1)\}$
- Isomorphic to C_{2} : six subgroups generated by the six transpositions and three subgroups generated by the products of two distinct transpositions
- Isomorphic to C_{3} : four subgroups generated by three cycles
- Isomorphic to $V_{4}:=C_{2} \times C_{2}$: one transitive subgroup

$$
V=\{(1),(12)(34),(13)(24),(14)(23)\}
$$

and three non-transitive subgroups from products of C_{2} 's above.

- Isomorphic to C_{4} : three transitive subgroups generated by (1234), (1324), (1243)
- Isomorphic to S_{3} : four non-transitive subgroups obtained as stabilisers of each element of the finite set.
- Isomorphic to D_{4} : three transitive subgroups generated by the three C_{4} 's above and one by the non-transitive V_{4} 's above.
- The alternating subgroup A_{4}
- S_{4}

We shall only consider the cases where f is an irreducible quartic polynomial over K so that the Galois group is one of $V, C_{4}, D_{4}, A_{4}, S_{4}$.

Proposition 13.1. Let $f(X)=X^{4}+b X^{2}+c \in K[X]$ be an irreducible seperable polynomial. Then $\operatorname{Gal}(f / K)=V$ if and only if c is a square in K.

Proof. The roots of $f(X)$ are given by $\pm \sqrt{r \pm s \sqrt{t}}$ where $b=-2 r$ and $c=$ $r^{2}-s^{2} t$. Letting $\alpha=\sqrt{r+s \sqrt{t}}$ and $\alpha^{\prime}=\sqrt{r-s \sqrt{t}}$ then the roots of f are $\alpha,-\alpha, \alpha^{\prime},-\alpha^{\prime}$. The splitting field for f over K is therefore $L=K\left(\sqrt{t}, \alpha, \alpha^{\prime}\right)$. Therefore $|G a l(f / K)|$ divides 8 . We hence have that $\operatorname{Gal}(f / K)$ is either C_{4}, D_{4} or V.
The discriminant of f is given by

$$
D=\delta^{2}=2^{4}\left(b^{2}-4 c\right)^{2} c=2^{8} s^{4} t^{2}\left(r^{2}-s^{2} t\right)
$$

If c is a square in K then so is D. Hence $G a l(f / K) \subseteq A_{4}$. Since the order of the Galois group must divide 8 , the only choice is that $\operatorname{Gal}(f / K)=V$.

Remark. We also see from the above proof that $\sqrt{r+s \sqrt{t}}$ can be written as $\sqrt{a}+\sqrt{b}$ if and only if $r^{2}-s^{2} t$ is a square in K.

Remark. To check if a polynomial of the form $f(X)=X^{4}+a X^{2}+b$ is irreducible over K, we first consider the quadratic polyomial $g(Y)=Y^{2}+$ $a Y+b$. If the roots of f are $\pm \alpha$ and $\pm \alpha^{\prime}$ then the roots of g are α^{2} and $\alpha^{\prime 2}$. If $g(X)$ is reducible then α^{2} and $\alpha^{\prime 2}$ lie in K and hence $f(X)$ factorises into $\left(X^{2}-\alpha^{2}\right)\left(X^{2}-\alpha^{\prime 2}\right)$.
Conversely, if $g(X)$ is irreducible then we just have to check if $f(X)$ factorises over $K[X]$ into two quadratic polynomials. Writing

$$
f(X)=\left(X^{2}+a X+b\right)\left(X^{2}+c X+d\right)
$$

we can check if there exist solutions of $a, b, c, d \in K$ with a and c non-zero. If such no such solution exists thatn $f(X)$ is irreducible over K.

Example 13.2. Consider the polynomial $f(X)=X^{4}-10 X^{2}+1$ over \mathbb{Q}. By the remark above, we can show that f is irreducible over \mathbb{Q}. The quadratic polynomial $Y^{2}-10 Y+1$ has no roots in \mathbb{Q}. Hence if $f(X)$ is reducible, it should factorise as

$$
\begin{aligned}
f(X) & =X^{4}-10 X^{2}+1=\left(X^{2}+a X+b\right)\left(X^{2}+c X+d\right) \\
& =X^{4}+(a+c) X^{3}+(b+d+a c) X^{2}+(b c+a d) X+b d
\end{aligned}
$$

Hence, $a=-c, b+d-a^{2}=-10, a(d-b)=0$ and $b d=1$. We see that $b=d= \pm 1$. Therefore $a^{2}= \pm 2+10$ which has no rational solutions. Hence $f(X)$ is irreducible over \mathbb{Q}.
By the proposition, since $c=1$ is a square in \mathbb{Q}, we have that $G a l(f / \mathbb{Q}) \cong V$. By the fundamental theorem, there are three intermediate extensions of degree 2 over \mathbb{Q}. The roots of the polynomial are $\pm \sqrt{5} \pm 2 \sqrt{6}$. Let $\alpha_{1}=-\alpha_{2}=$ $\sqrt{5+2 \sqrt{6}}$ and $\alpha_{3}=-\alpha_{4}=\sqrt{5-2 \sqrt{6}}$.

The orbit of α_{1} under the group generated by $\sigma_{1}:=(12)(34)$ is $\left\{\alpha_{1}, \alpha_{2}\right\}$. Therefore the field fixed by σ_{1} contains $\alpha_{1}+\alpha_{2}=0$ and $\alpha_{1} \alpha_{2}=-(5+2 \sqrt{6})$. The fixed field is thus $L^{\left\langle\sigma_{1}\right\rangle}=\mathbb{Q}(\sqrt{6})$. Furthermore, the group generated by σ_{1} is a normal subgroup of V. Therefore $\mathbb{Q}(\sqrt{6})$ is Galois over \mathbb{Q}.

The orbit of α_{1} under the group generated by $\sigma_{2}:=(13)(24)$ is $\left\{\alpha_{1}, \alpha_{3}\right\}$. Therefore the field fixed by σ_{2} contains $\alpha_{1}+\alpha_{3}$ and $\alpha_{1} \alpha_{3}=1 .\left(\alpha_{1}+\alpha_{3}\right)^{2}=$ $5+2 \sqrt{6}+5-2 \sqrt{6}+2 \alpha_{1} \alpha_{3}=12$. Hence $\alpha_{1}+\alpha_{3}=\sqrt{12}=2 \sqrt{3}$. The fixed field is thus $L^{\left\langle\sigma_{2}\right\rangle}=\mathbb{Q}(\sqrt{3})$. Furthermore, the group generated by σ_{2} is a normal subgroup of V. Therefore $\mathbb{Q}(\sqrt{3})$ is Galois over \mathbb{Q}.

The orbit of α_{1} under the group generated by $\sigma_{3}:=(14)(23)$ is $\left\{\alpha_{1}, \alpha_{4}\right\}$. Therefore the field fixed by σ_{3} contains $\sigma_{1}+\sigma_{4}$ and $\sigma_{1} \sigma_{4}=-1 .\left(\sigma_{1}+\sigma_{4}\right)^{2}=$ $5+2 \sqrt{6}+5-2 \sqrt{6}+2 \alpha_{1} \alpha_{4}=8$. Hence $\alpha_{1}+\alpha_{4}=\sqrt{8}=2 \sqrt{2}$. The fixed field is thus $L^{\left\langle\sigma_{3}\right\rangle}=\mathbb{Q}(\sqrt{2})$. Furthermore, the group generated by σ_{3} is a normal subgroup of V. Therefore $\mathbb{Q}(\sqrt{3})$ is Galois over \mathbb{Q}.

The lattice diagrams of the subgroups of $\operatorname{Gal}(f / \mathbb{Q})$ and the intermediate fields of L and \mathbb{Q} are

From the above computations, we can obtain an explicit expression of the form $\sqrt{a}+\sqrt{b}$ for the roots of f. $\alpha_{1}+\alpha_{3}=2 \sqrt{3}$ and $\alpha_{1}+\alpha_{4}=\alpha_{1}-\alpha_{3}=2 \sqrt{2}$. Hence $\alpha_{1}=\sqrt{2}+\sqrt{3}$ and $\alpha_{3}=\sqrt{3}-\sqrt{2}$.

Example 13.3. Consider the polynomial $f(X)=X^{4}-4 X^{2}+2$. By Eisenstein's criterion with the prime number 2, we have that $f(X)$ is irreducible over the rational numbers. The roots of this polynomial are $\pm \sqrt{2 \pm \sqrt{2}}$. Denote $\alpha_{1}=-\alpha_{2}=\sqrt{2+\sqrt{2}}$ and $\alpha_{3}=-\alpha_{4}=\sqrt{2-\sqrt{2}}$. Since $c=2$ is not a square in $\mathbb{Q}, \operatorname{Gal}(f / \mathbb{Q})$ is either C_{4} or D_{4}.
Consider the extension $L=\mathbb{Q}\left(\alpha_{1}\right)$. Trivially, $\alpha_{1}, \alpha_{2}=L$. We can see that $\alpha_{1} \alpha_{2}=\sqrt{2} \in L$ and $\alpha_{1}+\alpha_{3}=\sqrt{2} \alpha$. Hence all roots of $f(X)$ are in $L . L$ must therefore be a splitting field and hence is a normal extension of \mathbb{Q}. Thus $|G a l(f / K)|=[L: K]=4$. We must therefore have that $\operatorname{Gal}(f / K)=C_{4}$ as D_{4} has order 8. C_{4} has two proper subgroups, namely the trivial subgroup and the cyclic group of order 2.

The orbit of α_{1} under the permutation $\sigma:=(12) \subseteq C_{2}$ is $\left\{\alpha_{1}, \alpha_{2}\right\}$. Therefore the field fixed by σ contains $\alpha_{1}+\alpha_{2}$ and $\alpha_{1} \alpha_{2}=-\sqrt{2} .\left(\alpha_{1}+\alpha_{2}\right)^{2}=$ $2+\sqrt{2}-2(2+\sqrt{2})+2+\sqrt{2}=0$. Hence we see that $L^{\langle\sigma\rangle}=\mathbb{Q}(\sqrt{2})$. Furthermore, $C_{2} \triangleleft C_{4}$ hence $L^{\langle\sigma\rangle}$ is Galois over \mathbb{Q}.
The lattice diagrams are

Example 13.4. Consider the polynomial $f(X)=X^{4}-6 X^{2}+7$ over the rational numbers. The quadratic polynomual $Y^{2}-6 Y+7$ has no rational roots. Hence if $f(X)$ is reducible then it should factorise as

$$
\begin{aligned}
X^{4}-6 X^{2}+7 & =\left(X^{2}+a X+b\right)\left(X^{2}+c X+d\right) \\
& =X^{4}+(a+c) X^{3}+(b+d+a c) X^{2}+(b c+a d) X+b d
\end{aligned}
$$

We have that $b=d$ and thus $b^{2}=7$. This has no rational solutions hence $f(X)$ is irreducible over \mathbb{Q}.
Now, $c=7$ is not a square in \mathbb{Q}. Therefore $\operatorname{Gal}(f / \mathbb{Q})$ is either C_{4} or D_{4}. The roots of $f(X)$ are $\pm \sqrt{3 \pm \sqrt{2}}$. Denote $\alpha_{1}=-\alpha_{2}=\sqrt{3+\sqrt{2}}$ and $\alpha_{3}=-\alpha_{4}=\sqrt{3-\sqrt{2}} . \quad \alpha_{1} \alpha_{2}=\sqrt{7}$ and $\alpha_{1}^{2}-3=\sqrt{2}$. Hence any
splitting field L of $f(X)$ must have two quadratic intermediate fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{7})$. This is only possible if $G a l(f / K)=D_{4}$. By the definition of D_{4}, we have that $G a l(f / \mathbb{Q})=\langle x=(1324), y=(13)(24)\rangle$. The following table shows whether or not each subgroup of D_{4} fixes the roots and combinations of roots that are present in L. An element is designated fixed by \square.

	$\langle x\rangle$	$\left\langle x^{2}\right\rangle$	$\langle y\rangle$	$\langle x y\rangle$	$\left\langle x^{2} y\right\rangle$	$\left\langle x^{3} y\right\rangle$	$\{e\}$	D_{4}
α_{1}	\times	\times	\times	\times	\times	\square	\square	\times
α_{3}	\times	\times	\times	\square	\times	\times	\square	\times
$\sqrt{2}$	\times	\square	\times	\square	\times	\square	\square	\times
$\sqrt{7}$	\times	\square	\times	\times	\square	\times	\square	\times
	$\sqrt{2}, \sqrt{7}$	\times	\square	\times	\times	\times	\times	\square
$\alpha_{1}+\alpha_{3}$	\times	\times	\square	\times	\times	\times	\square	\times
$\alpha_{1}-\alpha_{3}$	\times	\times	\times	\times	\square	\times	\square	\times
$\sqrt{14}$	\square	\times	\times	\times	\times	\times	\square	\times

We therefore obtain the following lattices

Example 13.5. Consider the polynomial $f(X)=X^{4}-6 x^{2}+6$ over the rational numbers. By Eisenstein's criterion with the prime number 3, $f(X)$ is irreducible over \mathbb{Q}. Since $c=6$ is not a square in \mathbb{Q}, we have that $\operatorname{Gal}(f / \mathbb{Q})$ is either C_{4} or D_{4}. The roots of the polynomial are $\pm \sqrt{3 \pm \sqrt{3}}$. Denote $\alpha_{1}=-\alpha_{2}=\sqrt{3+\sqrt{3}}$ and $\alpha_{3}=-\alpha_{4}=\sqrt{3-\sqrt{3}}$. Now $\alpha_{1} \alpha_{3}=\sqrt{6}$ and $\alpha_{1}^{2}-3=\sqrt{3}$. Hence any splitting field L of f contains two quadratic intermediate extensions, namely $\mathbb{Q}(\sqrt{6})$ and $\mathbb{Q}(\sqrt{3})$ hence $\operatorname{Gal}(f / K) \cong D_{4}$.

Definition 13.6. Let $f(X)$ be a quartic polynomial with roots $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and consider the partially symmetric functions

$$
\begin{aligned}
& \beta_{1}=\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4} \\
& \beta_{2}=\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4} \\
& \beta_{3}=\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}
\end{aligned}
$$

then the polynomial

$$
g(X)=\left(X-\beta_{1}\right)\left(X-\beta_{2}\right)\left(X-\beta_{3}\right)
$$

lies in $K[X]$ and is called the cubic resolvent of $f(X)$.
If the cubic resolvent of a quartic polynomial is reducible in $K[X]$ then $G a l(f / K)$ is a subgroup of D_{4}. Hence we can apply the above analysis with the discriminant D to determine whether the Galois group is V, C_{4} or D_{4}. If $g(X)$ is irreducible in $K[X]$ then the Galois group is either A_{4} or S_{4}. We can then determine which one it is by checking if the discriminant is a square in K. If it is then the $\operatorname{Gal}(f / K)=A_{4}$. If not then $\operatorname{Gal}(f / K)=S_{4}$.

For a quartic polynomial of the form $f(X)=X^{4}+a X+b$, the discriminant is $D=-27 a^{4}+256 b^{3}$ and the cubic resolvent is $g(X)=X^{3}-4 b X-a^{2}$.

Example 13.7. Let $f(X)=X^{4}+X+1$ be a polynomial over the rationals. $f(X)$ is irreducible modulo 2 hence f is irreducible over \mathbb{Z}. By Gauss' Lemma, it is hence irreducible over \mathbb{Q}. The discriminant of f is $D=-27+256=229$ which is not a square in the rational numbers. The cubic resolvent of f is $g(X)=X^{3}-4 X-1 . g(X)$ is irreducible modulo 2 and is therefore irreducible over \mathbb{Z} by Gauss' Lemma. Hence $\operatorname{Gal}(f / \mathbb{Q})=S_{4}$.

Example 13.8. Consider the polynomial $f(X)=X^{4}+8 X+12$ over the rational numbers. This function is always positive at integers and thus has
no roots in \mathbb{Z}. Therefore it has no roots in \mathbb{Q}. This rules out factorisations into 4 linear factors or one linear factor and one cubic factor. However, the polynomial could still have a factorisation of two quadratics.
If $f(X)$ factorises into two irreducible quadratic factors over \mathbb{Z} then it should do so modulo p for any prime p. But

$$
f(X)=(X-4)\left(X^{3}+4 X^{4}+X+2\right) \quad(\bmod 5)
$$

and $X^{3}+4 X^{2}+X+2$ is irreducible modulo 5. Hence $f(X)$ cannot factor into two irreducible quadratic polynomials over \mathbb{Z}. Therefore f is irreducible over \mathbb{Z} and by Gauss' lemma, over \mathbb{Q}.
The discriminant of f is $-3^{3} \cdot 2^{1} 2+2^{8} \cdot 2^{6} \cdot 3^{3}=3^{3} \cdot 2^{1} 2(4-1)=2^{1} 2 \cdot 3^{4}$. This is a square in \mathbb{Q} hence the Galois group is either V or A_{4}. The cubic resolvent of f is $g(X)=X^{3}-48 X-64$. This is irreducible mod 5 and hence over \mathbb{Q}. Therefore $\operatorname{Gal}(f / K)=A_{4}$.

Chapter 14

Finite Fields

Lemma 14.1. Let F be a finite field of characteristic p. Then $|F|=p^{s}$ for some $s \in \mathbb{N}$.

Proof. The characteristic homomorphism from \mathbb{Z} to F has kernel (p) for some prime p. Therefore $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is contained in F. We can then consider F as a finite dimensional vector space over \mathbb{F}_{p}. Therefore F has a basis b_{1}, \ldots, b_{s} of s elements, say. Then any $f \in F$ can be represented in the form $f=a_{1} b_{1}+\cdots+a_{s} b_{s}$ for some $a_{i} \in \mathbb{F}_{p}$. Since each a_{i} can take p different values, we have that there must be p^{s} different elements in F for some $s \geq 1$.

Lemma 14.2. If a field of order p^{s} exists for some $s \in \mathbb{N}$ then it is unique up to isomorphism.

Proof. Let F be a finite field of order p^{s}. Then F^{\times}is a finite abelian group of order $p^{s}-1$. Therefore $\alpha^{p^{s}-1}=1$ for all $\alpha \in \mathbb{F}^{\approx} \beth \gtrdot \sim$. Hence $\alpha^{p^{s}}=\alpha$ for all $\alpha \in F$. Now let $f(X)=X^{p^{s}}-X$. Then $f(\alpha)=0$ for all $\alpha \in F$. Since F has characteristic p, we see that $f^{\prime}(X)=-1$ so $f(X)$ is seperable. Hence f has p^{s} different roots. We can thus see that F is a splitting field of $f(X)$ over \mathbb{F}_{p}. Since any two splitting fields for a polynomial over the same base field are isomorphic, we have that any two fields of order p^{s} must be isomorphic.

Proposition 14.3. Let p be a prime and $s \in \mathbb{N}$. Then the field of order p^{s} exists.

Proof. Consider the polynomial $f(X)=X^{p^{s}}-X \in \mathbb{F}_{p}[X]$. Let F be the splitting field of $f(X)$ over $\mathbb{F}_{p}[X]$. Then \mathbb{F} is a finite field and $|F| \geq p^{s}$.
Now let S be the set of roots of $f(X)$ in F. We claim that $S=F$. It suffices
to show that S is a field. Since $f(0)=f(1)=0, S$ contains 0 and 1 . Now let $\alpha, \beta \in S$. It is easy to see that $\alpha+\beta, \alpha \beta, \alpha, \alpha^{-1}$ are all in S. Hence S is a field.

Remark. We denote the field of order p^{s} by $\mathbb{F}_{p^{s}}$. Note, however, that $\mathbb{F}_{p^{s}}$ is never $\mathbb{Z} / p^{s} \mathbb{Z}$. Since $\mathbb{F}_{p^{s}}$ is a seperable splitting field over \mathbb{F}_{p}, it follows that $\mathbb{F}_{p^{s}}$ is Galois over \mathbb{F}_{p}. Moreover, since $\left[\mathbb{F}_{p^{s}}: \mathbb{F}_{p}\right]=s$, we get that $\left|\operatorname{Gal}\left(\mathbb{F}_{p^{s}} / \mathbb{F}_{p}\right)\right|=s$.

Definition 14.4. Let $\boldsymbol{F r o b}$ be the automorphism of $\mathbb{F}_{p^{s}}$ given by

$$
\operatorname{Frob}(x)=x^{p}
$$

Frob is an $\mathbb{F}_{p^{-}}$-automorphism of $\mathbb{F}_{p^{s}}$. It is called the Frobenius automorphism.

Proposition 14.5. $\mathbb{F}_{p^{s}}^{\times}$is a cyclic group of order $p^{s}-1$.
Proof. Let $n=p^{s}-1$. For all $0<d \mid n$, denote

$$
\Omega_{d}:=\left\{\alpha \in \mathbb{F}_{p^{s}}^{\times} \mid \text {order of } \alpha \text { is } d\right\}
$$

We claim that $\left|\Omega_{d}\right| \leq \varphi(d)$. If Ω_{d} is empty then $\left|\Omega_{d}\right|=0$ and we are done. Hence assume that $\left|\Omega_{d}\right|$ is non-empty and $\alpha \in \Omega_{d}$. The polynomial $X^{d}-1$ has at most d roots in $\mathbb{F}_{p^{s}}$ and hence $1, \alpha, \alpha^{2}, \ldots, \alpha^{d-1}$ are all the roots of $X^{d}-1$ in $\mathbb{F}_{p^{s}}$. Furthermore, $\alpha^{i} \in \Omega_{d}$ if and only if $\operatorname{gcd}(i, d)=1$. Hence Ω_{d} has $\varphi(d)$ elements.
Now we observe that any element of $\mathbb{F}_{p^{s}}^{\times}$has order d for some $0<d \mid n$. Therefore,

$$
\mathbb{F}_{p^{s}}^{\times}=\bigcup_{0<d \mid n} \Omega_{d}
$$

and the union is disjoint. Therefore

$$
n=\left|\mathbb{F}_{p^{s}}^{\times}\right|=\sum_{0<d \mid n}\left|\Omega_{d}\right| \leq \sum_{0<d \mid n} \varphi(d)=n
$$

Hence we have an equality and each Ω_{d} is in fact non-empty and has exactly $\varphi(d)$ elements. Therefore $\mathbb{F}_{p^{s}}^{\times}$has an element of order n and is thus cyclic.

Corollary 14.6. The order of the Frobenius automorphism of $\mathbb{F}_{p^{s}}$ is s. Therefore $\operatorname{Gal}\left(\mathbb{F}_{p^{s}} / \mathbb{F}\right)$ is a cyclic group generated by Frob.

Proof. Let m be the order of Frob of $\mathbb{F}_{p^{s}}$. Then $\alpha^{p^{m}}=\alpha$ for all $\alpha \in \mathbb{F}_{p^{s}}$. This is equivalent to having $\alpha^{p^{m}-1}=1$ for all $\alpha \in \mathbb{F}_{p^{s}}^{\times}$. The least such m is s by the previous proposition. Hence the order of the Frobenius automorphism of $\mathbb{F}_{p^{s}}$ is s.

Theorem 14.7. The field $\mathbb{F}_{p^{s}}$ injects in $\mathbb{F}_{p^{s^{\prime}}}$ if and only if $s \mid s^{\prime}$.
Proof.
\Longrightarrow : Assume that $\mathbb{F}_{p^{s}}$ injects in $\mathbb{F}_{p^{s^{s}}}$. Then the group $\operatorname{Gal}\left(\mathbb{F}_{p^{s}} / \mathbb{F}\right)$ can be obtained through a quotient of the group $\operatorname{Gal}\left(\mathbb{F}_{p^{s^{\prime}}} / \mathbb{F}\right)$. Hence $s \mid s^{\prime}$.
$\Longleftarrow: ~ C o n v e r s e l y$, if $s \mid s^{\prime}$ then $\left(X^{p^{s}}-X\right) \mid\left(X^{p^{s^{\prime}}}-X\right)$. Therefore, a splitting field of $X^{p^{s^{\prime}}}-X$ over \mathbb{F}_{p} contains a splitting field of $X^{p^{s}}-X$ over \mathbb{F}_{p}.

Theorem 14.8. Let p be a prime and $f(X) \in \mathbb{F}_{p}[X]$ a irreducible polynomial of degree d over \mathbb{F}_{p}. Then $\operatorname{Gal}(f / \mathbb{F})$ is a cyclic group of order d. More generally, if f is not irreducible but nreaks into r irreducible factors of degree $d_{1}, d_{2}, \ldots, d_{r}$ then $\operatorname{Gal}\left(f / \mathbb{F}_{p}\right)$ is a cyclic group of order lcm $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$.

Proof. Let $f(X) \in \mathbb{F}_{p}[X]$ be an irreducible polynomial of degree d and $F=\mathbb{F}[X] /(f(X))$. Then F is a field and the extension F / \mathbb{F}_{p} has degree d. Therefore $F \cong \mathbb{F}_{p^{d}}$. But we know that $\mathbb{F}_{p^{d}} / \mathbb{F}$ is a Galois extension. It contains a root of $f(X)$ and hence $f(X)$ must split completely in $\mathbb{F}_{p^{s}}[X]$. In particular, $\mathbb{F}_{p^{d}}$ contains the splitting field of f. Since $\operatorname{deg}(f)=d=\left[\mathbb{F}_{p^{d}}: \mathbb{F}_{p}\right]$, we must have that $\mathbb{F}_{p^{d}}$ is a splitting field of f over \mathbb{F}_{p}. Therefore $\operatorname{Gal}\left(f / \mathbb{F}_{p}\right)$ is a cyclic group of order d.

Chapter 15

Inverse Limits, Profinite Groups and Topology

Definition 15.1. Let \mathcal{F} be a set with a binary relation \leq that is reflexive, antisymmetric and transitive. Then we say that \mathcal{F} is a partially ordered set.

Definition 15.2. Let \mathcal{F} be a partially ordered set and $i, j \in \mathcal{F}$. We say that \mathcal{F} is directed if there exists $k \in \mathcal{F}$ such that $i \leq K$ and $j \leq K$.

Definition 15.3. Let \mathcal{F} be a directed partially ordered set and for every $i \in \mathcal{F}$ let G_{i} be a finite group. Consider a pair $i, j \in \mathcal{F}$ such that $i \leq j$ and $\varphi_{i, j}: G_{j} \rightarrow G_{i}$ a mapping satisfying $\varphi_{i, i}=i d_{G_{i}}$ and if $i \leq j \leq k$ then $\varphi_{i, j} \circ \varphi_{j, k}=\varphi_{i, k}$.
We define the inverse limit ${\underset{\longleftarrow}{\longleftarrow}}_{i \in \mathcal{F}} G_{i}$ to be the subset of $\prod_{i \in \mathcal{F}} G_{i}$ containing all $\left(x_{i}\right)_{i \in \mathcal{F}}$ such that $\varphi_{i, j}\left(x_{j}\right)=x_{i}$ for all $i \leq j$. This is a subgroup of $\prod_{i \in \mathcal{F}} G_{i}$. A group of the form $\lim _{i \in \mathcal{F}} G_{i}$ is called a profinite group.

Example 15.4. Any finite group G is a profinite group. Indeed, we may take \mathcal{F} to be $\{1\}$ and $G_{1}=G$.

Example 15.5. The set of natural numbers with usual ordering is a directed partially ordered set. Let p be a prime number and for every $n \in \mathbb{N}$, denote $G_{n}=\mathbb{Z} / p^{n} \mathbb{Z}$. The maps from $G_{n} \rightarrow G_{m}$ for any $m \leq n$ is the natural projection. Then the inverse limit $\varliminf_{\varliminf_{n}} \mathbb{Z} / p^{n} \mathbb{Z}$ is called the group of \boldsymbol{p}-adic integers.

Example 15.6. We may consider another ordering on \mathbb{N}. Let $m \leq n$ if m divides n. Then, with this ordering, \mathbb{N} is a directed partially ordered set. For every $n \in \mathbb{N}$, denote $G_{n}=\mathbb{Z} / n \mathbb{Z}$. We again take the map from $G_{n} \rightarrow G_{m}$ to be the natural projection for any $m \mid n$. The inverse limit $\lim _{\varliminf_{n}} \mathbb{Z} / n \mathbb{Z}$ is denoted by $\hat{\mathbb{Z}}$.

Example 15.7. We again consider \mathbb{N} with its usual ordering and let $G_{n}=$ $\mathbb{Z} / p^{n} \mathbb{Z}$. This time, consider the map $\varphi_{n}: G_{n} \rightarrow G_{n-1}$ to be multiplication by p. Then $\varliminf_{幺} G_{n}=0$.

Example 15.8. Let K / F be a Galois extension (not necessarily finite) and $G=\operatorname{Gal}(K / F)$. Consider the set

$$
\mathcal{F}=\{L \mid L / F \text { is a finite Galois extension contained in } K\}
$$

We have the natural directed partial ordering on \mathcal{F} where $L \leq L^{\prime}$ if $L \subseteq L^{\prime}$. For every $L \in \mathcal{F}$, we have the group $G_{L}=\operatorname{Gal}(L / F)$. For $L \subseteq L^{\prime}$, there is the obvious resstriction map $G_{L^{\prime}} \rightarrow G_{L}$. Then \mathcal{F} is non-empty and $G \cong$ $\varliminf_{\llcorner } \operatorname{Gal}(L / K)$.
Definition 15.9. Let X be a set and $\mathcal{P}(X)$ be the set of all subsets of X. Then a topology on X is a subset $\mathcal{T}(X)$ of $\mathcal{P}(X)$ such that

1. X and the empty set \varnothing are in $\mathcal{T}(X)$
2. Arbitrary unions of sets in $\mathcal{T}(X)$ are in $\mathcal{T}(X)$
3. Finite intersections of sets in $\mathcal{T}(X)$ are in $\mathcal{T}(X)$ A topological space is a pair $(X, \mathcal{T}(X))$ where X is a set and $\mathcal{T}(X)$ is a topology on X. The subsets of X contained in $\mathcal{T}(X)$ are called open subsets of X. A subset of X is called closed if its complement in X is open.

Definition 15.10. A basis of a topological space X is a collection \mathcal{B} of open subsets of X such that every open subset can be writen as the union of sets in \mathcal{B}.

Definition 15.11. Let G be a profinite group. Then the Krull Topology on G is the topology with basis given by cosets of finite order subgroups of G. Let K / F be a Galois extension. Then the Krull Topology on $\operatorname{Gal}(K / F)$ is the one with the basis given by all cosets of $\operatorname{Gal}(K / L)$ where L is a finite extension of K.

Theorem 15.12. Let K / F be a Galois extension and $G=G a l(K / F)$. Let G be endowed with the Krull topology. Then there is a bijection between the closed subgroups H of G and the intermediate fields of K / F given by $H \mapsto K^{H}$ and $L \mapsto \operatorname{Gal}(K / L)$.
For any subgroup H of G, we have that $\operatorname{Gal}\left(K / K^{H}\right)=\bar{H}$.
A field L such that $F \subseteq L \subseteq K$ is a Galois extension of F if and only if Gal (K / L) is a normal subgroup of G. Moreover, the restriction map $G \rightarrow$ $\operatorname{Gal}(L / F)$ induces a continuous isomorphism

$$
\operatorname{Gal}(K / F) / \operatorname{Gal}(K / L) \rightarrow \operatorname{Gal}(L / F)
$$

Chapter 16

Cyclotomic Extensions

Definition 16.1. We say that ζ_{n} is an $n^{\text {th }}$ root of unity if $\zeta_{n}^{n}=1$. If $\zeta_{n}=1$ but $\zeta_{n}^{m} \neq 1$ for all $1 \leq m \leq n-1$, we say that ζ_{n} is the primitive $n^{t} h$ root of unity.

Definition 16.2. Let K be a subfield of \mathbb{C}. We say that the extension $K\left(\zeta_{n}\right)$ is the $n^{\text {th }}$ cyclotomic extension of K.

Remark. The $n^{\text {th }}$ cyclotomic extension of K is the splitting field of $X^{n}-1$ over K. Hence $K\left(\zeta_{n}\right) / K$ is Galois.

Lemma 16.3. Let n be a prime number. Then the minimal polynomial of ζ_{n} over \mathbb{Q} is $\Phi_{n}(X):=X^{n-1}+X^{n-2}+\cdots+1$.

Proof. We note that

$$
\Phi_{n}(X)=X^{n-1}+X^{n-2}+\cdots+1=\frac{X^{n}-1}{X-1}
$$

Hence $\Phi_{n}\left(\zeta_{n}\right)=0$.
Lemma 16.4. Let $n \in \mathbb{N}$. Then the minimal polynomial $\Phi_{n}(X)$ of ζ_{n} over \mathbb{Q} is

$$
\Phi_{n}(X)=\frac{X^{n}-1}{\prod_{0<d<n, d \mid n} \Phi_{d}(X)}
$$

Proof. Let $f(X)$ be the minimal polynomial over \mathbb{Q}. We prove that if p is a prime nnumber not dividing n then ζ_{n}^{p} is a root of $f(X)$. Obviously,
$f(X) \mid\left(X^{n}-1\right)$. Let $X^{n}-1=f(X) h(X)$. By Gauss' lemma, both f and h have integer coefficients. Since $X^{n}-1$ is a seperable polynomial, ζ_{n}^{p} is either a root of $f(X)$ or $h(X)$ but not both. Assume that ζ_{n}^{p} is a root of $h(X)$. Then $f(X) \mid h\left(X^{p}\right)$. Let $h\left(X^{p}\right)=f(X) g(X)$ for some monic $g(X) \in \mathbb{Z}[X]$. Now $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{Z}$ implies that

$$
f(X) g(X)=h\left(X^{p}\right) \equiv h(X)^{p}(\bmod p)
$$

Hence $f(X)$ and $g(X)$ have common factors modulo p and therefore $X^{n}-1$ has multiple roots modulo p. But as p does not divide n and 0 is not a root of $X^{n}-1$, the polynomial $X^{n}-1$ cannot have multiple roots modulo p. Therefore ζ_{n}^{p} must be a root of $f(X)$. Hence $f(X)$ is also the minimal polynomial of ζ_{n}^{p} over \mathbb{Q}. Therefore, ζ_{n}^{m} is also a root of $f(X)$ for any m coprime to n. Hence $\operatorname{deg}(f) \geq \varphi(n)$.
Now we denote the minimal polynomial of ζ_{n} by $\Phi_{n}(X)$. Then we claim that

$$
\prod_{0<d \mid n} \Phi_{d}(X)=X^{n}-1
$$

Note that $\Phi_{d}(X) \neq \Phi_{d^{\prime}}$ if $d \neq d^{\prime}$ as $\Phi_{d}(X) \mid X^{d}-1$ and $\Phi_{d^{\prime}}(X)$ does not divide $X^{d}-1$ if $d^{\prime}>d$. Hence $\Phi_{d}(X)$ are all pairwise coprime. Since $\Phi_{d}(X) \mid X^{n}-1$ for every $d \mid n$, we have that $\prod_{0<d \mid n} \Phi_{d}(X) \mid X^{n}-1$. Using the results from the previous claim, we have that $\operatorname{deg}\left(\Phi_{d}\right) \geq \varphi(d)$ whence $\operatorname{deg}\left(\prod_{0<d \mid n} \Phi_{d}(X)\right) \geq$ $\sum_{0<d \mid n} \varphi(d)=n$. Hence we see that $\prod_{0<d \mid n} \Phi_{d}(X)=X^{n}-1$.

Remark. Using the above lemma, we can recursively find the $n^{\text {th }}$ cyclotomic polynomial.

Corollary 16.5. $\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]=\varphi(n)$. More generally, $\left[K\left(\zeta_{n}\right): K\right] \leq \varphi(n)$.
Proof. Since the degree of $\Phi_{n}(X)$ is $\varphi(n)$, the assertion about \mathbb{Q} is clear. Now we observe that $\Phi_{n}(X)$ is a monic polynomial with coefficients in \mathbb{Z}. We can therefore consider $\Phi_{n}(X)$ over any field and ζ_{n} is its root over such a field. Hence the minimal polynomial of ζ_{n} over K divides $\Phi_{n}(X)$ and thus $\left[K\left(\zeta_{n}\right): K\right] \leq \operatorname{deg}\left(\Phi_{n}(X)\right)=\varphi(n)$.

Proposition 16.6. $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$. More generally, $\operatorname{Gal}\left(K\left(\zeta_{n}\right) / K\right)$ injects in $(\mathbb{Z} / n \mathbb{Z})^{\times}$.

Proof. We first observe that

$$
\Phi_{n}(X)=\prod_{0 \leq i \leq n, \operatorname{gcd}(n, i)=1}\left(X-\zeta_{n}^{i}\right)
$$

The elements of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ are determined by the images of ζ_{n}. Hence

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)=\left\{\sigma_{i} \mid 0 \leq i \leq n, \operatorname{gcd}(n, i)=1\right\}
$$

where $\sigma_{i}\left(\zeta_{n}\right)=\zeta_{n}^{i}$. It obviously follows that the map

$$
\begin{aligned}
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) & \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times} \\
\sigma_{i} & \mapsto i
\end{aligned}
$$

is an isomorphism.
For a general field K, the minimal polynomial of ζ_{n} over K is a divisor of $\Phi_{n}(X)$. Hence only those $\sigma_{i}{ }^{\prime}$'s lie om $\operatorname{Gal}\left(K\left(\zeta_{n}\right) / K\right)$ for which ζ_{n}^{i} is a root of the minimal polynomial. Hence the above map forms an injection from $\operatorname{Gal}\left(K\left(\zeta_{n}\right) / K\right)$ in $(\mathbb{Z} / n \mathbb{Z})^{\times}$.

Chapter 17

The equation $X^{n}-a$

Let $K \subseteq \mathbb{C}$ be a subfield and $a \in K$. Consider the polynomial $X^{n}-a \in K[X]$. If α is a root of $X^{n}-a$ then all the roots are of the form $\left\{\zeta_{n}^{i} \alpha \mid 0 \leq i \leq n\right\}$. Hence the splitting field of $X^{n}-a$ over K is $K\left(\zeta_{n}, \alpha\right)$. The extension $K\left(\zeta_{n}, \alpha_{)} / K\right.$ is normal since it is the splitting field of a polynomial. It is seperable as K as a subfield of \mathbb{C} has characteristic 0 .

To find $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\right)$, we first consider the subgroup $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\left(\zeta_{n}\right)\right)$.
Proposition 17.1. $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\left(\zeta_{n}\right)\right.$ is a cyclic group of order dividing n.

Proof. The conjugates of α over $K\left(\zeta_{n}\right)$ is a subset of

$$
\left\{\zeta_{n}^{i} \mid 0 \leq i \leq n\right\}
$$

Now we define a map

$$
\chi: \operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\left(\zeta_{n}\right)\right) \rightarrow \mathbb{Z} / n \mathbb{Z} \lambda \quad \mapsto i
$$

if $\lambda(\alpha)=\zeta_{n}^{i} \alpha$. Then this mapping is a homomorphism and, since the image of α determines elements of the Galois Group, the map is injective. It is not necessarily surjective and is only so if $X^{n}-a$ is irreducible over $K\left(\zeta_{n}\right)$. Since the subgroups of any cyclic group are again cyclic groups, it follows that $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\left(\zeta_{n}\right)\right)$ is isomorphic to a cyclic group.

Corollary 17.2. $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\right)$ contains $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\left(\zeta_{n}\right)\right)$ as a normal subgroup and the quotient is abelian.

Proof. Using the fundamental theorem of Galois theory, since $K\left(\zeta_{n}\right) / K$ is a Galois extension, the subgroup $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\left(\zeta_{n}\right)\right)$ is a normal subgroup of $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\right)$ and the quotient is isomorphic to $\operatorname{Gal}\left(K\left(\zeta_{n}\right) / K\right)$ which is cyclic and hence abelian by the previous proposition.

Proposition 17.3. Let K be a field containing ζ_{n} and L a Galois extension of K such that $G a l(L / K)$ is a cyclic group of order n. Then there exists an element $l \in L$ such that $L=K(l)$ and $l^{n} \in K$.

Proof. Let σ be the generator of $\operatorname{Gal}(L / K)$. Then σ induces a K-linear transformation of the K-vector space L. Since σ is a finite order linear transformation, it is diagonalisable. Since σ^{n} is the identity, the eigenvalues of σ are the $n^{t h}$ roots of 1 . Since σ^{m} is not the identity for all) $<m<n$ then there must be an eigenvalue which is a primitive $n^{\text {th }}$ root of 1 . Let $l \in L$ be the corresponding eigevectro. We hence have that

$$
\sigma(l)=\zeta l
$$

where ζ is the primitive $n^{\text {th }}$ root of 1 . Note that $\sigma(\zeta)=\zeta$ as $\zeta \in K$. Hence $\sigma^{i}(l)=\zeta^{i}$. Therefore l has n conjugates over K. Therefore $[K(l): K]=n$ and so $K(l)=L$. Furthermore, $\sigma\left(l^{n}\right)=\sigma(l)^{n}=(\zeta l)^{n}=l^{n}$. Hence $l^{n} \in$ $L^{\langle\sigma\rangle}=K$.

Chapter 18

Solvability

Definition 18.1. A group G is called solvable if there exists a finite chain of subgroups

$$
\{e\}=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_{n}=G
$$

such that each G_{i-1} is normal in G_{i} and the quotient group G_{i} / G_{i-1} is cyclic for $1 \leq i \leq n$.

Lemma 18.2.

1. Let G be solvable and $H \subseteq G$ a subgroup. Then H is solvable.
2. Let $H \triangleleft G$ be a normal subgroup. Then G is solvable if and only if both H and G / H are solvable.
3. Any abelian group is solvable

Proof.
Part 1: Let G be a solvable group with a finite chain of subgroups

$$
\{e\}=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_{n}=G
$$

such that G_{i-1} is normal in G_{i} and the quotient group G_{i} / G_{i-1} is cyclic for $1 \leq i \leq n$. Let H be a subgroup of G and define $H_{i}=G_{i} \cap H$ for all $0 \leq i \leq n$. Hence we get the chain

$$
\{e\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_{n}=H
$$

Each H_{i-1} is normal in H_{i}. Indeed, let $h \in H_{i}$, then

$$
\begin{aligned}
h H_{i-1} & =h\left(G_{i-1} \cap H\right) \\
& =\left(h G_{i-1}\right) \cap(h H)
\end{aligned}
$$

We have that $h \in H_{i} \Longleftrightarrow h \in G_{i} \cap H_{i} \Longrightarrow h \in G_{i}$. It is also clear that $h \in H$. Now since G_{i-1} is normal in G_{i} and H is trivially normal with respect to itself, we see that

$$
\begin{aligned}
h H_{i-1} & =h\left(G_{i-1} \cap H\right) \\
& =\left(h G_{i-1}\right) \cap(h H) \\
& =\left(G_{i-1} h\right) \cap(H h) \\
& =\left(G_{i-1} \cap H\right) h \\
& =H_{i-1} h
\end{aligned}
$$

The quotient group H_{i} / H_{i-1} injects in G_{i} / G_{i-1} and must hence be cyclic. Therefore H is solvable.

Proposition 18.3. Let K be a field and $n \in \mathbb{N}$. If the char (K) is positive, we assume that n is coprime to char (K). Let $a \in K$. Then the Galois group of $X^{n}-a$ is solvable.

Proof. By Corollary 17.2, we can see that $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\right.$ contains $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\left(\zeta_{n}\right)\right)$ as a normal subgroup and the quotient is abelian. Hence by the previous lemma, $\operatorname{Gal}\left(K\left(\zeta_{n}, \alpha\right) / K\right.$ is solvable.

Definition 18.4. Let L / K be a field extension. We say that L / K is a radical extension if there exists an element $l \in L$ such that $L=K(l)$ and $l^{n} \in K$ for some $n \in \mathbb{N}$.

Definition 18.5. Let L / K be a field extension. We say that L / K is solvable by radicals if there exists a chain of subfields

$$
K=L_{0} \subseteq L_{1} \subseteq \cdots \subseteq L_{n-1} \subseteq L_{n} \supseteq L
$$

such that L_{n} / K is Galois and each extension L_{i} / L_{i-1} is a radical extension for $1 \leq i \leq n$.

Definition 18.6. Let α be an algebraic element over K. Then we say that α is solvable by radicals if $K(\alpha) / K$ is solvable by radicals.

Lemma 18.7. Let $f(X) \in K[X]$ be an irreducible polynomial and α a root of $f(X)$. If α is solvable by radicals then so is any other root of $f(X)$.

Proof. Let $L=K(\alpha)$ and each L_{i} subfields fitting the definition of a solvable by radical extension. Then L_{n} / K is Galois and contains α. Hence $f(X)$ splits completely in L_{n}. Let β be another root of $f(X)$. Then $K(\beta) \subseteq L_{n}$. Therefore $K(\beta) / K$ is solvable by radicals.

Definition 18.8. We say that L / K is solvable if there exists a finite degree Galois extension M / K such that $L \subseteq M$ and $G a l(L / K)$ is a solvable group.

Theorem 18.9. Let L / K be a field extension. Then L / K is solvable if and only if L / K is solvable by radicals.

